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Choose at least two problems to write up. I recommend solving even the ones
you don’t write up. The hints are there in case you want to follow them, but you may solve
the problems however you like. As usual, you may collaborate, but the writeup should be
in your own words and you should list collaborators and source material.

1. Positive-definiteness: For symmetric n × n matrices A and B, write that A � B
if and only if A−B is positive semidefinite, where we recall that a symmetric matrix
C is positive-semidefinite if xTCx ≥ 0 for all x. We will show a few properties of this
now (not necessarily in any particular order). Let A and B be positive-semidefinite
matrices.

Note: for this course, positive-semidefinite matrices are symmetric by definition. This
is just a matter of convention (but it makes sense; matrices can be written as a sum of
symmetric and antisymmetric parts and definiteness only depends on the symmetric
part. Moreover, complex matrices can only satisfy the definiteness condition if they
are antisymmetric.)

(a) Let λ1 ≥ . . . ≥ λn be eigenvalues of a symmetric matrix A. Then λ1In � A �
λnIn. Hint: Courant Fischer.

(b) Let A be positive-semidefinite. Show that there is a matrix, denoted
√
A, such

that
√
A
√
A = A. Hint: use the spectral theorem.

(c) Suppose C is invertible and A,B symmetric. Then CACT � CBCT if and only
if A � B.

(d) Suppose A and B are positive-definite. Then A � B if and only if B−1 � A−1.
Hint: Choose a clever choice of C (possibly involving item b) and apply item
c together with the fact that for any square matrices S and T , the spectrum of
ST and TS are the same.

2. Expanders: We say a d-regular graph G is an ε-expander if every eigenvalue of the
adjacency matrix A(G) except λ1 is at most εd in absolute value. Recall that G
ε-approximates H if and only if the Laplacians satisfy

(1 + ε)L(H) � L(G) � (1− ε)L(H).
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(a) Show that a d-regular graph G is an ε-expander if and only if G ε-approximates
(d/n)Kn, the complete graph with edges of weight d/n. Hint: Courant Fischer.

3. Harmonic functions: A function x : V (G)→ R on the vertices of a graph G is said
to be harmonic on S ⊂ V (G) if for all v ∈ S the function value at v is the average of
the function values of at the neighbors of v.

(a) Show that if G is connected then every function that is harmonic on S = V is
constant.

(b) The vertices in V (G) \ S are called boundary vertices and the values x takes
here the boundary values. Finding a function that is harmonic on S with given
boundary values is called the Dirichlet problem. How is this related to the spring
problem from Aruzhan’s talk and the voltage and random walk problems from
Max, Lay, Alina and Sherri’s talks? Conclude that the Dirichlet problem has a
unique solution if G is connected.

(c) Why is the Dirichlet problem not substantially different if we allow x : V → Rn

for some n > 1?

4. Energy: Consider a directed graph with two distinguished vertices s, t (source and
sink), a.k.a. a flow network. We define a flow jxy as any assignment of real numbers
to a directed graph that satisfies Kirchoff’s law at every point other than s, t, namely
that the flow into and out of any internal vertex is zero. A unit flow has net flow out
of the source equal to 1. Given an assignment of resistances Rxy to the edges, define
the energy dissipation of a flow to be

∑
xy Rxyj

2
xy.

• Show that the unit electrical current, namely a unit flow ixy which satisfies
Ohm’s law for some voltage v applied at source and 0 applied at sink, minimizes
the energy dissipation. This is known as Thomson’s principle. Hint: to build
intuition you may want to begin with the case that all Rxy = 1. If you like
physics, it might also help to interpret the resistances as spring constants.

• Using that a unit current has energy dissipation Reff (this makes sense from
the formula I2R for energy dissipation across a resistor), conclude Rayleigh’s
monotonicity law for effective resistance.

5. Springs: This is exercise 1.2.5 in Doyle and Snell. Recall that a spring network
for a graph G is an assignment x : V (G) → R of the vertices to real numbers and
each vertex feels a force −(x(v)− x(w)) for every w adjacent to v. We say a spring
network with a subset F ⊂ V of fixed vertices is at equilibrium if the total force on
each non-fixed vertex is zero.

The method of relaxations method to approximating the equilibrium of a spring
network is the following iterative scheme: start with an initial guess for x, and fix an

2



ordering on V \F . One at a time, replace v by the average x(v) by d(v)−1
∑

w∼v x(w)
for v ∈ V \ F . Repeat the replacement step until you are satisfied.

(a) Suppose the initial guess satisfies x(v) ≤ d(v)−1
∑

w∼v x(w). Show that for each
v, x(v) is monotone increasing throughout the process and has a limit x̃(v).
Show that x̃ solves the spring network problem.

3


