Massachusetts Institute of Technology
18.453: Combinatorial Optimization

Instructor: Cole Franks Notes: Michel Goemans and Zeb Brady April 29, 2021

Matroid intersection activity

Collaborate on these with your breakout room in explain.mit.edu (or using whatever method you find convenient).

1. Let G be a bipartite graph with bipartition A, B.
(a) Given an example showing that the set of matchings does not form the independent sets of a matroid.
(b) Show that the set of matchings is the intersection of two matroids. Hint: ${ }^{1}$

[^0]2. Recall a problem from Pset 4: given an undirected graph G and an assignment p of numbers to the vertices, we'd like to direct the edges in G so that every vertex has at most $p(v)$ incoming edges.
(a) Describe a pair of matroids whose largest common independent set has size $|E|$ if and only if G has a direction satisfying the above condition. Hint: ${ }^{2}$

[^1]3. Suppose G is an undirected graph and the edge set E of G has been "colored," Show that the set of colorful spanning trees (spanning trees whose edges are all different colors) is the set of common bases of two matroids. Hint: ${ }_{3}^{3}$

[^2]4. For a directed graph D and a "root" vertex $r \in V(D)$ such that r has no incoming edges, define an arborescence to be a spanning tree of D directed away from $r \|^{\boxed{4}}$
(a) Let G be the underlying undirected graph of D obtained by forgetting the directions of the edges ${ }^{5}$ Show that any subgraph of D which corresponds to a spanning tree in G and has at most one edge entering each vertex is an arborescence.
(b) Show that the set of arborescences of D, r is the set of common bases of two matroids. Hint: ${ }^{6}$

[^3]5. Consider an undirected graph G. We'd like to decide if G is the union of two edgedisjoint spanning trees. Given a matroid $M=(E, I)$, define its dual matroid M^{*} to be $\left(E, I^{*}\right)$ where I^{*} is the set of subsets of E whose complements contain a base of M.
(a) Describe a pair of matroids whose largest common independent set has size $|V|-1$ if and only if G has two edge-disjoint spanning trees. You may use that the dual matroid is indeed a matroid.
(b) Bonus: prove that the dual matroid is a matroid.

[^0]: ${ }^{1}$ It is the intersection of two partition matroids.

[^1]: ${ }^{2}$ Again, two partition matroids will suffice.

[^2]: ${ }^{3}$ This time you can use a graphic matroid and a partition matroid.

[^3]: ${ }^{4}$ Here spanning tree just means that it's a spanning tree in the underlying undirected graph G.
 ${ }^{5} G$ may have multi-edges if both directions (u, v) and (v, u) of an edge were present in $E(D)$.
 ${ }^{6}$ Again you can use the intersection of a graphic matroid and a partition matroid.

