Instructions. This is a practice, take-home quiz. This is meant to be done in $\mathbf{2}$ hours with access to notes and course material, but no access to collaborators. For best practice I suggest trying to complete it under these conditions. Afterwards please tell me if 2 hours felt like enough.

1. Consider a bipartite graph $G=(V, E)$ in which every vertex has degree k (a so-called k-regular bipartite graph). Prove that such a graph always has a perfect matching in two different ways:
(a) by using König's theorem,
(b) by using the LP formulation of the min-weight perfect matching problem.
2. Suppose $G=(V, E)$ is a 2-edge-connected graph (that is, G remains connected if you delete any single edge) with at least one perfect matching, and suppose that G has a special edge e such that the graph obtained by removing e from G has no perfect matching. Show that there is necessarily a nonempty set $S \subseteq V$ with the following properties:

- the number of odd components of $G \backslash S$ is exactly $|S|$,
- $G \backslash S$ has at least one even component.

3. Show that for any point x_{0} in an unbounded polyhedron $P \subset \mathbb{R}^{n}, P$ contains a ray from x_{0}, a set of the form $\left\{x_{0}+\alpha y: \alpha \geq 0\right\}$ for some $y \in \mathbb{R}^{n}$. A suggested approach:

- Show it is enough to prove this when x_{0} is 0 .
- As P unbounded, there is some c such that $\max \left\{c^{T} x: x \in P\right\}=\infty$. Apply linear programming duality for the linear program $\max \left\{c^{T} x: x \in P\right\}$ to show something about the feasibility/infeasibility of the dual.
- Apply Farkas' lemma to the infeasibility/feasibility of the dual in order to obtain the direction of the ray.

An extra problem: This one shouldn't count as part of your 2 hours, but a problem like it could appear on the exam.
4. Let G be a bipartite graph with bipartition A, B and edge set E. A fractional vertex cover is a pair of assignments of numbers $\left(x_{a} \in \mathbb{R}: a \in A\right)$ and $\left(y_{b} \in \mathbb{R}: b \in B\right)$ to the vertices such that

$$
\begin{aligned}
x_{a}+y_{b} & \geq 1 \quad \forall a b \in E \\
x_{a} \geq 0 & \forall a \in A \\
y_{a} \geq 0 & \forall b \in B
\end{aligned}
$$

The fractional vertex cover number is

$$
\tau(G):=\min \left\{\sum_{a \in A} x_{a}+\sum_{a \in B} y_{a}:(x, y) \text { is a fractional vertex cover of } G\right\} .
$$

Show that the fractional vertex cover number is the same as the vertex cover number, i.e. the size of a minimum vertex cover. Hint: $⿴$

[^0]
[^0]: ${ }^{1}$ Use total modularity, and that M^{T} is totally unimodular if and only if M^{T} is.

