
Massachusetts Institute of Technology 18.453: Combinatorial Optimization
Instructor: Cole Franks Notes: Michel Goemans and Zeb Brady

7. Lecture notes on the ellipsoid algorithm

The simplex algorithm was the first algorithm proposed for linear programming, and
although the algorithm is quite fast in practice, no variant of it is known to be polynomial
time. The Ellipsoid algorithm is the first polynomial-time algorithm discovered for linear
programming. The Ellipsoid algorithm was proposed by the Russian mathematician Shor
in 1977 for general convex optimization problems, and applied to linear programming by
Khachyan in 1979. Contrary to the simplex algorithm, the ellipsoid algorithm is not very
fast in practice; however, its theoretical polynomiality has important consequences for com-
binatorial optimization problems as we will see. Another polynomial-time algorithm, or
family of algorithms to be more precise, for linear programming is the class of interior-point
algorithms that started with Karmarkar’s algorithm in 1984; interior-point algorithms are
also quite practical but they do not have the same important implications to combinatorial
optimization as the ellipsoid algorithm does.

The problem being considered by the ellipsoid algorithm is:

Given a bounded convex set P ∈ Rn find x ∈ P .

We will see that we can reduce linear programming to finding an x in P = {x ∈ Rn :
Cx ≤ d}.

The ellipsoid algorithm works as follows. We start with a big ellipsoid E that is guar-
anteed to contain P . We then check if the center of the ellipsoid is in P . If it is, we are
done, we found a point in P . Otherwise, we find an inequality cTx ≤ di which is satisfied
by all points in P (for example, it is explicitly given in the description of P) which is not
satisfied by our center. P is then contained in the body E ∩ {x : cTx ≤ di}, which is some
piece of the ellipsoid E. We find a new ellipsoid E ′ containing E ∩ {x : cTx ≤ di}, replace
E ← E ′ and repeat the process. Critically, we will always be able to find E ′ with volume a
constant (but dimension-dependent) factor smaller than that of E. Because the volume of
E can never be smaller than that of K, the number of steps before the center is in P is at
most poly(n) log vol(E)

vol(P)
. One iteration of the ellipsoid algorithm is illustrated in Figure 7.1.

The ellipsoid algorithm is the following.

• Let E0 be an ellipsoid containing P

• while center ak of Ek is not in P do:

– Let cTx ≤ cTak be such that {x : cTx ≤ cTak} ⊇ P

– Let Ek+1 be the minimum volume ellipsoid containing Ek ∩ {x : cTx ≤ cTak}
– k ← k + 1

The ellipsoid algorithm has the important property that the ellipsoids contructed shrink
in volume as the algorithm proceeds; this is stated precisely in the next lemma. This means

7. Lecture notes on the ellipsoid algorithm 2
7. Lecture notes on the ellipsoid algorithm May 4th, 2009 2

E1

E0
a0

a1
P

Figure 7.1: One iteration of the ellipsoid algorithm.

Lemma 7.1 V ol(Ek+1)

V ol(Ek)
< e−

1
2(n+1) .

Before we can state the algorithm more precisely, we need to define ellipsoids.

Definition 7.1 Given a center a, and a positive definite matrix A, the ellipsoid E(a, A) is
defined as {x ∈ Rn : (x− a)TA−1(x− a) ≤ 1}.

One important fact about a positive definite matrix A is that there exists B such that
A = BTB, and hence A−1 = B−1(B−1)T . Ellipsoids are in fact just affine transformations
of unit spheres. To see this, consider the (bijective) affine transformation T : x → y =
(B−1)T (x− a). It maps E(a, A)→ {y : yTy ≤ 1} = E(0, I).

We first consider the simple case in which the ellipsoid Ek is the unit sphere and the
inequality we generate is x1 ≥ 0. We claim that the ellipsoid containing Ek ∩ {x : x1 ≥ 0} is

Ek+1 =

{
x :

(
n + 1

n

)2(
x− 1

n + 1

)2

+
n2 − 1

n2

n∑

i=2

x2
i ≤ 1

}
.

Figure 7.1: One iteration of the ellipsoid algorithm.

that if the set P has positive volume, we will eventually find a point in P . We will need to
deal with the case when P has no volume (i.e. P has just a single point), and also discuss
when we can stop and be guaranteed that either we have a point in P or we know that P is
empty.

Lemma 7.1 V ol(Ek+1)

V ol(Ek)
< e−

1
2(n+1) .

Before we can state the algorithm more precisely, we need to define ellipsoids.

Definition 7.1 Given a center a, and a positive definite matrix A, the ellipsoid E(a,A) is
defined as {x ∈ Rn : (x− a)TA−1(x− a) ≤ 1}.

One important fact about a positive definite matrix A is that there exists B such that
A = BTB, and hence A−1 = B−1(B−1)T . Ellipsoids are in fact just affine transformations
of unit spheres. To see this, consider the (bijective) affine transformation T : x → y =
(B−1)T (x− a). It maps E(a,A)→ {y : yTy ≤ 1} = E(0, I).

We first consider the simple case in which the ellipsoid Ek is the unit sphere and the
inequality we generate is x1 ≥ 0. We claim that the ellipsoid containing Ek ∩ {x : x1 ≥ 0} is

Ek+1 =

{
x :

(
n+ 1

n

)2(
x1 −

1

n+ 1

)2

+
n2 − 1

n2

n∑

i=2

x2
i ≤ 1

}
.

7. Lecture notes on the ellipsoid algorithm 3

Indeed, if we consider an x ∈ Ek ∩ {x : x1 ≥ 0}, we see that

(
n+ 1

n

)2(
x1 −

1

n+ 1

)2

+
n2 − 1

n2

n∑

i=2

x2
i

=
n2 + 2n+ 1

n2
x2

1 −
(
n+ 1

n

)2
2x1

n+ 1
+

1

n2
+
n2 − 1

n2

n∑

i=2

x2
i

=
2n+ 2

n2
x2

1 −
2n+ 2

n2
x1 +

1

n2
+
n2 − 1

n2

n∑

i=1

x2
i

=
2n+ 2

n2
x1(x1 − 1) +

1

n2
+
n2 − 1

n2

n∑

i=1

x2
i

≤ 1

n2
+
n2 − 1

n2
≤ 1.

In this specific case, we can prove easily lemma 7.1.
Proof: The volume of an ellipsoid is proportional to the product of its side lengths.
Hence the ratio between the unit ellipsoid Ek and Ek+1 is

V ol(Ek+1)

V olEk
=

(n
n+1

)(n2

n2−1
)
n−1
2

1

=

(
n

n+ 1

)(
n2

n2 − 1

)n−1
2

< e−
1

n+1 e
n−1

2(n2−1) = e−
1

n+1 e
1

2(n+1) = e−
1

2(n+1) ,

where we have used the fact that 1 + x ≤ ex for all x, with strict inequality if x 6= 0. 4
Now consider the slightly more general case in which the ellipsoid is also the unit sphere

but we have an arbitrary constraint dTx ≤ 0. We want to find an ellipsoid that contains
E(0, I) ∩ {x : dTx ≤ 0} (we let ‖d‖ = 1; this can be done by scaling both sides), it is easy
to verify that we can take Ek+1 = E(− 1

n+1
d, F), where F = n2

n2−1
(I − 2

n+1
ddT), and the ratio

of the volumes is ≤ exp
(
− 1

2(n+1)

)
.

Now we deal with the case where Ek is not the unit sphere. We take advantage of the
fact that linear transformations preserve ratios of volumes.

Ek
T→ E(0, 1)

↓
Ek+1

T−1

← E ′
(1)

Let ak be the center of Ek, and cTx ≤ cTak be the halfspace through ak that contains P .
Therefore, the half-ellipsoid that we are trying to contain is E(ak, A) ∩ {x : cTx ≤ cTak}.

7. Lecture notes on the ellipsoid algorithm 4

Let’s see what happens to this half-ellipsoid after the transformation T defined by y =
T (x) = (B−1)T (x− a). This transformation transforms Ek = E(ak, A) to E(0, I). Also,

{x : cTx ≤ cTak} T→ {y : cT (ak +BTy) ≤ cTak} = {y : cTBTy ≤ 0} = {y : dTy ≤ 0}, (2)

where d is given by the following equation:

d =
Bc√

cTBTBc
=

Bc√
cTAc

. (3)

Let b = BTd = Ac√
cTAc

. This implies:

Ek+1 = E

(
ak −

1

n+ 1
b,

n2

n2 − 1
BT

(
I − 2

n+ 1
ddT
)
B

)
(4)

= E

(
ak −

1

n+ 1
b,

n2

n2 − 1

(
A− 2

n+ 1
bbT
))

. (5)

To summarize, here is the Ellipsoid Algorithm:

1. Start with k = 0, E0 = E(a0, A0) ⊇ P , P = {x : Cx ≤ d}.

2. While ak 6∈ P do:

• Let cTx ≤ d be an inequality that is valid for all x ∈ P but cTak > d.

• Let b = Akc√
cTAkc

.

• Let ak+1 = ak − 1
n+1

b.

• Let Ak+1 = n2

n2−1
(Ak − 2

n+1
bbT).

Claim 7.2 V ol(Ek+1)

V ol(Ek)
< exp

(
− 1

2(n+1)

)
.

After k iterations, V ol(Ek) ≤ V ol(E0) exp
(
− k

2(n+1)

)
. If P is nonempty then the Ellipsoid

Algorithm should find x ∈ P in at most 2(n+ 1) ln V ol(E0)
V ol(P)

steps.

In general, for a full-dimensional polyhedron described as P = {x : Cx ≤ d}, one can

show that V ol(E0)
V ol(P)

is polynomial in the encoding length for C and d. We will not show this
in general, but we will focus on the most important situation in combinatorial optimization
when we are given a set S ⊆ {0, 1}n (not explicitly, but for example as the incidence vectors
of all matchings in a graph) and we would like to optimize over P = conv(S). We will
make the assumption that P is full-dimensional; otherwise, one can eliminate one or several
variables and obtain a smaller full-dimensional problem.

7. Lecture notes on the ellipsoid algorithm 5

From feasibility to Optimization First, let us show how to reduce such an optimization
problem to the problem of finding a feasible point in a polytope. Let cTx with c ∈ Rn be
our objective function we would like to minimize over P . Assume without loss of generality
that c ∈ Zn. Instead of optimizing, we can check the non-emptiness of

P ′ = P ∩ {x : cTx ≤ d+
1

2
}

for d ∈ Z and our optimum value corresponds to the smallest such d. As S ⊆ {0, 1}n, d must
range in [−ncmax, ncmax] where cmax = maxi ci. To find d, we can use binary search (and
check the non-emptiness of P ′ with the ellipsoid algorithm). This will take O(log(ncmax)) =
O(log n+ log cmax) steps, which is polynomial.

Starting Ellipsoid. Now, we need to consider using the ellipsoid to find a feasible point
in P ′ or decide that P ′ is empty. As starting ellipsoid, we can use the ball centered at
the vector (1

2
, 1

2
, · · · , 1

2
) and of radius 1

2

√
n (which goes through all {0, 1}n vectors). This

ball has volume V ol(E0) = 1
2n

(
√
n)nV ol(Bn), where Bn is the unit ball. We have that

V ol(Bn) = πn/2

Γ(n
2

+1)
, which for the purpose here we can even use the (very weak) upper bound

of πn/2 (or even 2n). This shows that log(V ol(E0)) = O(n log n).

Termination Criterion. We will now argue that if P ′ is non-empty, its volume is not
too small. Assume that P ′ is non-empty, say v0 ∈ P ′ ∩ {0, 1}n. Our assumption that P
is full-dimensional implies that there exists v1, v2, · · · , vn ∈ P ∩ {0, 1}n = S such that the
“simplex” v0, v1, · · · , vn is full-dimensional. The vi’s may not be in P ′. Instead, define wi
for i = 1, · · · , n by:

wi =

{
vi if cTvi ≤ d+ 1

2

v0 + α(vi − v0) otherwise

where α = 1
2ncmax

. This implies that wi ∈ P ′ as

cTwi = cTv0 + αcT (vi − v0) ≤ d+
1

2ncmax
ncmax = d+

1

2
.

We have that P ′ contains C = conv({v0, w1, w2, · · · , wn}) and V ol(C) is 1
n!

times the volume
of the parallelipiped spanned by wi − v0 = βi(vi − v0) (with βi ∈ {α, 1}) for i = 1, · · · , n.
This paralleliped has volume equal to the product of the βi (which is at least αn) times the
volume of a parallelipiped with integer vertices, which is at least 1. Thus,

V ol(P ′) ≥ V ol(C) =
1

n!

(
1

2ncmax

)n
.

Taking logs, we see that the number of iterations of the ellipsoid algorithm before either
discovering that P ′ is empty or a feasible point is at most

log(V ol(E0))− log(V ol(P ′)) = O(n log n+ n log cmax).

This is polynomial.

7. Lecture notes on the ellipsoid algorithm 6

Separation Oracle. To run the ellipsoid algorithm, we need to be able to decide, given
x ∈ Rn, whether x ∈ P ′ or find a violated inequality. The beauty here is that we do not
necessarily need a complete and explicit description of P in terms of linear inequalities. We
will see examples in which we can even apply this to exponential-sized descriptions. What
we need is a separation oracle for P : Given x∗ ∈ Rn, either decide that x∗ ∈ P or find
an inequality aTx ≤ b valid for P such that aTx∗ > b. If this separation oracle runs in
polynomial-time, we have succeeded in finding the optimum value d when optimizing cTx
over P (or S).

Finding an optimum solution. There is one more issue. This algorithm gives us a point
x∗ in P of value at most d+ 1

2
where d is the optimum value. However, we are interested in

finding a point x ∈ P ∩ {0, 1}n = S of value exactly d. This can be done by starting from
x∗ and finding any extreme point x of P such that cTx ≤ cTx∗. Details are omitted.

In summary, we obtain the following important theorem shown by Grötschel, Lovász and
Schrijver, 1979.

Theorem 7.3 Let S = {0, 1}n and P = conv(S). Assume that P is full-dimensional and we
are given a separation oracle for P . Then, given c ∈ Zn, one can find min{cTx : x ∈ S} by
the ellipsoid algorithm by using a polynomial number of operations and calls to the separation
oracle.

To be more precise, the number of iterations of the ellipsoid algorithm for the above
application is O(n2 log2 n + n2 log2 cmax), each iteration requiring a call to the separation
oracle and a polynomial number of operations (rank-1 updates of the matrix A, etc.).

Here are two brief descriptions of combinatorial optimization problems that can be solved
with this approach.

Minimum Cost Arborescence Problem. We have seen a combinatorial algorithm to
solve the minimum cost arborescence problem, and it relied on solving by a primal-dual
method the linear program:

LP = min
∑

a∈A
caxa

subject to:

(P)
∑

a∈δ−(S)

xa ≥ 1 ∀S ⊆ V \ {r}

xa ≥ 0 a ∈ A.

Instead, we could use the ellipsoid algorithm to directly solve this linear program in polynomial-
time. Indeed, even though this linear program has an exponential number of constraints (in
the size of the graph), a separation oracle for it can be easily defined. Indeed consider x∗. If
x∗a < 0 for some a ∈ A, just return the inequality xa ≥ 0. Otherwise, for every t ∈ V \ {r},

7. Lecture notes on the ellipsoid algorithm 7

consider the minimum r − t cut problem in which the capacity on arc a is given by x∗a. As
we have seen, this can be solved by maximum flow computations. If for some t ∈ V \ {r},
the minimum r− t cut has value less than 1 then we have found a violated inequality by x∗.
Otherwise, we have that x∗ ∈ P . Our separation oracle can thus be implemented by doing
|V | − 1 maximum flow computations, and hence is polynomial. We are done.

Maximum Weight Matching Problem. For the maximum weight matching problem
in a general graph G = (V,E), Edmonds has shown that the convex hull of all matchings is
given by: ∑

e∈E(S)

xe ≤
|S| − 1

2
S ⊂ V, |S| odd

∑

e∈δ(v)

xe ≤ 1 v ∈ V

xe ≥ 0 e ∈ E.

(6)

Given x∗, we can easily check if x∗ is nonnegative and if the n constraints
∑

e∈δ(v) xe ≤ 1 are
satisfied. There is an exponential number of remaining constraints, but we will show now
that they can be checked by doing a sequence of minimum cut computations.

Assume x ≥ 0 satisfies
∑

e∈δ(v) xe ≤ 1 for every v ∈ V , and we would like to decide if

∑

e∈E(S)

xe ≤
|S| − 1

2

for all S ⊂ V , |S| odd, and if not produce such a violated set S. We can assume without
loss of generality that |V | is even (otherwise, simply add a vertex). Let

sv = 1−
∑

e∈δ(v)

xe,

for all v ∈ V . Observe that
∑

e∈E(S) xe ≤ |S|−1
2

is equivalent to

∑

v∈S
sv +

∑

e∈δ(S)

xe ≥ 1.

Define a new graph H, whose vertex set is V ∪ {u} (where u is a new vertex) and whose
edge set is E ∪ {(u, v) : v ∈ V }. In this new graph, let the capacity ue of an edge be xe if
e ∈ E or sv for e = (u, v). Observe that in this graph,

∑

v∈S
sv +

∑

e∈δ(S)

xe ≥ 1

if and only if ∑

e∈δH(S)

ue ≥ 1,

7. Lecture notes on the ellipsoid algorithm 8

where δH(S) are the edges of H with one endpoint in S. Thus, to solve our separation
problem, it is enough to be able to find the minimum cut in H among all the cuts defined
by sets S with S ⊆ V , |S| odd. This is a special case of the minimum T -odd cut problem
seen previously. If the minimum T -odd cut problem returns a minimum cut of value greater
or equal to 1, we know that all inequalities are satisfied; otherwise, a minimum T -odd cut
provides a violated inequality.

