On the Discrepancy of Random Matrices with Many Columns

Cole Franks and Michael Saks

March 23, 2019

Discrepancy

- discrepancy of a matrix: extent to which the rows can be simultaneously split into two equal parts.
- $\bullet\,$ Formally, let $\|\cdot\|_*$ be a norm, and let

$$disc_*(M) = \min_{v \in \{+1,-1\}^n} \|Mv\|_*$$

(*M* is an $m \times n$ matrix).

Goal: prove disc_{*}(M) is small in certain situations, and find the good assignments v efficiently.

Examples and Applications

$$\mathsf{disc}_{\infty}\left[\begin{array}{rrr}1 & 0 & 1\\ 1 & 1 & 1\end{array}\right] = 1$$

- Extractors: the best extractor for two independent *n*-bit sources with min-entropy *k* has error rate disc_∞(*M*) where *M* is a
 - 1. $\binom{2^n}{2^k}^2 \times 2^{2n}$ matrix
 - 2. with one row for each rectangle $A \times B \subset \{0,1\}^n \times \{0,1\}^n$ with $|A| = |B| = 2^k$,

3. each row is a $2^n \times 2^n$ matrix with (x, y) entry equal to $\frac{1}{2^{2k}} 1_A(x) 1_B(y)$. number of rows is \gg number of columns, random coloring optimal but useless!

Upper bounds

Definition

herdisc(M): maximum discrepancy of any subset of columns of M.

Beck-Fiala Theorem: $M_{ij} \in [-1, 1]$ and $\leq t$ nonzero entries per column,

 $\operatorname{herdisc}(M) \leq 2t - 1.$

Beck-Fiala Conjecture: If *M* as above,

herdisc(M) = $O(\sqrt{t})$

Komlos Conjecture: *M* with unit vector columns,

herdisc(M) = O(1)

Banaczszyk's Theorem: If *M* as above,

 $\operatorname{herdisc}(M) = O(\sqrt{\log m})$

Discrepancy of random matrices

Let M be a random t-sparse matrix

Theorem (Ezra, Lovett 2015)

Few columns: If n = O(m), then with probability $1 - \exp(-\Omega(t))$.

herdisc $(M) = O(\sqrt{t \log t})$. Many columns: If $n = \Omega\left(\binom{m}{t} \log \binom{m}{t}\right)$ then with pr. $1 - \binom{m}{t}^{-\Omega(1)}$, $\operatorname{disc}(M) \leq 2$

Why not herdisc for many columns?

- $\mathcal{L} \subset \mathbb{R}^m$ is a nondegenerate lattice,
- X is a finitely supported r.v. on \mathcal{L} such that span_{$\mathbb{Z}} X = \mathcal{L}$.</sub>
- *n* columns of *M* are drawn i.i.d from *X*.

Question

How does $disc_*(M)$ behave for various ranges of n?

This talk: $n \gg m$

For $n \gg m$ the problem becomes a closest vector problem on \mathcal{L} . **Definition**

 $\rho_*(\mathcal{L})$ is the covering radius of \mathcal{L} in the norm $\|\cdot\|_*$.

Fact

 $\operatorname{disc}_*(M) \leq 2\rho_*(\mathcal{L})$ with high probability as $n \to \infty$.

Proof: For every subset $S \subset \text{supp } X$, pick E_S an even integer combination of the elements of supp X that is $2\rho_*(\mathcal{L})$ away from $\sum S$. Let B be a bound on all these coefficients. Each element of supp X appears B + 1 times with high probability in n; remove one of each column that appeared an odd number of times and set the labels on the remaining columns so that they sum to $-E_S$. Naïvely, n has to be huge. not tight!

Question

For a given random variable X, how large must n be before $disc_*(M) \leq 2\rho_*(\mathcal{L})$ with high probability?

t-sparse vectors, ℓ_{∞}

•
$$\mathcal{L}$$
 is $\{ \boldsymbol{x} \in \mathbb{Z}^m : \sum x_i \equiv 0 \mod t \}$

•
$$ho_{\infty}(\mathcal{L}) = 1$$

By fact, disc_{∞}(M) \leq 2 eventually. *EL*15 showed this happens for $n \geq \Omega(\binom{m}{t} \log \binom{m}{t})$. exponential dependence on t! This work: $n = \Omega(m^3 \log^2 m)$

Our results

Random *t*-sparse matrices:

Theorem (FS18)

Let *M* be a random t-sparse matrix. If $n = \Omega(m^3 \log^2 m)$, then

 $\operatorname{disc}_{\infty}(M) \leq 2$

with probability at least $1 - O\left(\sqrt{\frac{m\log n}{n}}\right)$.

Actually usually disc_{∞}(*M*) = 1.

Related work: Hoberg and Rothvoss '18 obtained $\Omega(m^2 \log m)$ for M with i.i.d $\{0, 1\}$ entries.

More generally

- $\mathcal{L}, \mathcal{M}, \mathcal{X}$ as before, and define
 - 1. $L = \max_{v \in \operatorname{supp} X} \|v\|_2$

e.g. \sqrt{t} for *t*-sparse

2. distortion $R_* = \max_{\|v\|_2=1} \|v\|_*$.

e.g. \sqrt{m} for $* = \infty$

3. spanningness: s(X) "how far X is from proper sublattice."

will be $\leq 1/m$ for *t*-sparse

Theorem (FS18)

Suppose $\mathbb{E}XX^{\dagger} = I_m$. Then disc_{*}(M) $\leq 2\rho_*(\mathcal{L})$ with probability $1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$ for

 $n \geq N = \operatorname{poly}(m, s(X)^{-1}, R_*, \rho_*(\mathcal{L}), \log \det \mathcal{L}).$

To apply the theorem to non-isotropic X, consider the transformed r.v. $\Sigma^{-1/2}X$, where $\Sigma = \mathbb{E}XX^{\dagger}$.

Need to show: for most fixed M, the r.v. $M\mathbf{y}$, $\mathbf{y} \in_R {\pm 1}^n$, gets within $2\rho_*(\mathcal{L})$ of the origin with positive probability. Use local central limit theorem:

 Intuitively the *My* (sampled at same time) approaches lattice Gaussian:

$$\Pr[M\mathbf{y} = \boldsymbol{\lambda}] \propto e^{-\frac{1}{2}\boldsymbol{\lambda}^{\dagger}\boldsymbol{\Sigma}^{-1}\boldsymbol{\lambda}}$$

for $\lambda \in M1 + 2\mathcal{L}$

- 2. For most M, My also behaves like this!
- 3. Then done: $\lambda \in M1 + 2\mathcal{L}$ contains, near origin, elements of *-norm $2\rho_*(\mathcal{L})$.

We propose an LCLT that takes a matrix parameter M, and show it holds for most M.

- Proof of LCLT \approx proof of LCLT in [Kuperberg, Lovett, Peled, '12].
- Differences:
 - theirs was for FIXED very wide matrices.
 - Ours holds for MOST *less wide* matrices.

Obstruction to LCLTs:

If X lies on a proper sublattice $\mathcal{L}' \subsetneq \mathcal{L}$, in trouble.

Need an approximate version of the assumption that this doesn't happen.

Definition

Dual lattice: $\mathcal{L}^* := \{ \boldsymbol{\theta} : \forall \boldsymbol{\lambda} \in \mathcal{L}, \langle \boldsymbol{\lambda}, \boldsymbol{\theta} \rangle \in \mathbb{Z} \}.$

Definition

 $f_X(oldsymbol{ heta}) := \sqrt{\mathbb{E}[|\langle X, oldsymbol{ heta}
angle \mod 1|^2]}$, where $\mathrm{mod}\, 1 o [-1/2, 1/2)$

 $f_X(\theta) = 0 \Longrightarrow \theta \in \mathcal{L}^*.$ $f_X(\theta) \approx 0 \Longrightarrow \langle X, \theta \rangle \approx \in \mathbb{Z}.$

Thus, obstruction is θ far from \mathcal{L}^* with $f_X(\theta)$ small.

Say $\boldsymbol{\theta}$ is pseudodual if

$$f_X(oldsymbol{ heta}) \leq rac{1}{2} oldsymbol{d}(heta, \mathcal{L}^*).$$
hy pseudodual? Near \mathcal{L}^* , $f_X(oldsymbol{ heta}) pprox oldsymbol{d}(heta, \mathcal{L}^*).)$

Spanningness:

(W

$$s(X) := \inf_{\mathcal{L}^*
eq \ heta \ ext{pseudodual}} f_X(heta).$$

For a matrix M, define the multidimensional Gaussian density

$$G_{\mathcal{M}}(\lambda) = \frac{2^{m/2} \det(\mathcal{L})}{\pi^{m/2} \sqrt{\det(\mathcal{M}\mathcal{M}^{\dagger})}} e^{-2\lambda^{\dagger} (\mathcal{M}\mathcal{M}^{\dagger})^{-1} \lambda}$$

on \mathbb{R}^m (Gaussian with covariance $\frac{1}{2}MM^{\dagger}$).

Theorem (FS18)

With probability
$$1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$$
 over the choice of M ,

1.
$$\frac{1}{2}nI_m \preceq MM^{\dagger} \preceq 2nI_m$$

$$\left|\Pr_{y_i \in \{\pm 1/2\}}[M \mathbf{y} = \boldsymbol{\lambda}] - G_M(\boldsymbol{\lambda})\right| = G_M(0) \cdot O\left(\frac{m^2 L^2}{n}\right)$$

for all $\lambda \in \frac{1}{2}M + \mathcal{L}$.

prvided $n \ge N_0 = \text{poly}(m, s(X)^{-1}, L, \log \det \mathcal{L}).$

Proof of local limit theorem

Definition (Fourier transform!)

If Y is a random variable on \mathbb{R}^m , $\widehat{Y}: \mathbb{R}^m \to \mathbb{C}$ is

$$\widehat{Y}(oldsymbol{ heta}) = \mathbb{E}[e^{2\pi i \langle Y, oldsymbol{ heta}
angle}].$$

Fact (Fourier inversion:)

if Y takes values on \mathcal{L} , then

$$\Pr(Y = \lambda) = \det(\mathcal{L}) \int_D \widehat{Y}(\theta) e^{-2\pi i \langle \lambda, \theta \rangle} d\theta$$

Here D is any fundamental domain of the dual lattice \mathcal{L}^* .

Neat/obvious: true even if Y takes values on an affine shift $v + \mathcal{L}$.

For fixed *M*, Fourier transform of $M\mathbf{y}$ for $\mathbf{y} \in_R {\pm 1/2}$? Say i^{th} column is \mathbf{x}_i .

$$\widehat{M\mathbf{y}}(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{y}} \left[e^{2\pi i \langle \sum_{j=1}^{n} y_j \mathbf{x}_j, \boldsymbol{\theta} \rangle} \right]$$
$$= \prod_{j=1}^{n} \mathbb{E}_{y_j} [e^{2\pi i y_j \langle \mathbf{x}_j, \boldsymbol{\theta} \rangle}]$$
$$= \prod_{i=1}^{n} \cos(\pi \langle \mathbf{x}_j, \boldsymbol{\theta} \rangle).$$

Use Fourier inversion

Let $\varepsilon > 0$, to be picked with hindsight (think $n^{-1/4}$)

$$\begin{aligned} \left| \frac{1}{\det \mathcal{L}} \Pr(My = \lambda) - G_M(\lambda) \right| &= \left| \int_D e^{-2\pi i \langle \lambda, \theta \rangle} (\widehat{My}(\theta) - \widehat{G_M}(\theta)) d\theta \right| \\ &\leq \int_{B(\varepsilon)} |\widehat{My}(\theta) - \widehat{G_M}(\theta)| d\theta \qquad (I_1) \\ &+ \int_{\mathbb{R}^m \setminus B(\varepsilon)} |\widehat{G_M}(\theta)| d\theta \qquad (I_2) \\ &+ \int_{D \setminus B(\varepsilon)} |\widehat{My}(\theta)| d\theta \qquad (I_3) \end{aligned}$$

If $D \subset B(\varepsilon)$. *D* is the Voronoi cell in \mathcal{L}^* . rest of the proof is to show these are small!

- First two easy from the eigenvalue property.
- $\mathbb{E}_{M}[I_{3}] \leq e^{-\varepsilon^{2}n}$ if $\varepsilon \leq s(X)$.

Applying the main theorem

From now on we just want to bound the spanningness. We'll do it for *t*-sparse vectors - the framework is that of [KLP12].

Lemma

Let X be a random t-sparse vector. Then $s(X) = \Omega(\frac{1}{m})$.

Recall what $s(X) \ge \frac{1}{m}$ means. We need to show that if θ is pseudodual, i.e., $f_X(\theta) \le \|\theta\|/2$ but not dual, then $f_X(\theta) \ge \alpha/m$.

Proof outline: (recall $f_X(\theta) := \sqrt{\mathbb{E}[|\langle X, \theta \rangle \mod 1|^2]}$)

• if all $|\langle \mathbf{x}, \theta \rangle \mod 1| \le 1/4$ for all $x \in \operatorname{supp} X$, then $f_X(\theta) \ge d(\theta, \mathcal{L}^*)$, so θ not pseudodual unless dual.

• X is
$$\frac{1}{2m}$$
-spreading: for all θ

$$f_X(oldsymbol{ heta}) \geq rac{1}{2m} \sup_{x \in \operatorname{supp} X} |\langle oldsymbol{x}, oldsymbol{ heta}
angle \mod 1|$$

Together, if θ is pseudodual, then $f_X(\theta) \geq \frac{1}{8m}$.

- 1. The argument in [KLP12] shows that X is $\frac{1}{(m \log m)^{3/2}}$ -spreading, but is much more general.
- 2. A direct proof yields the $\frac{1}{m}$.

A result for a non-lattice distribution:

Theorem (FS18)

Let M be a matrix with i.i.d random unit vector columns. Then

disc
$$M = O(e^{-\sqrt{rac{n}{m^3}}})$$

with probability at least $1 - O\left(L\sqrt{\frac{\log n}{n}}\right)$ provided $n = \Omega(m^3 \log^2 m)$,

- Can the colorings guaranteed by our theorems be produced efficiently? The probability a random coloring is good decreases with n as \sqrt{n}^{-m} , which is not good enough.
- As a function of *m*, how many columns are required such that disc(*M*) ≤ 2 for *t*-sparse vectors with high probability?

Thank you!