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Discrepancy

• discrepancy of a matrix: extent to which the rows can be

simultaneously split into two equal parts.

• Formally, let ‖ · ‖∗ be a norm, and let

disc∗(M) = min
v∈{+1,−1}n

‖Mv‖∗

(M is an m × n matrix).

Goal: prove disc∗(M) is small in certain situations, and find the good

assignments v efficiently.
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Examples and Applications

•

disc∞

[
1 0 1

1 1 1

]
= 1

• Extractors: the best extractor for two independent n-bit sources
with min-entropy k has error rate disc∞(M) where M is a

1.
(

2n

2k

)2
× 22n matrix

2. with one row for each rectangle A× B ⊂ {0, 1}n × {0, 1}n with

|A| = |B| = 2k ,

3. each row is a 2n× 2n matrix with (x , y) entry equal to 1
22k 1A(x)1B(y).

number of rows is � number of columns, random coloring optimal

but useless!
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Upper bounds

Definition

herdisc(M): maximum discrepancy of any subset of columns of M.

Beck-Fiala Theorem: Mij ∈ [−1, 1] and ≤ t nonzero entries per

column,

herdisc(M) ≤ 2t − 1.

Beck-Fiala Conjecture: If M as above,

herdisc(M) = O(
√
t)

Komlos Conjecture: M with unit vector columns,

herdisc(M) = O(1)

Banaczszyk’s Theorem: If M as above,

herdisc(M) = O(
√

logm)
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Discrepancy of random matrices

Let M be a random t-sparse matrix

m

 0 1 1 0 1

1 0 0 1 1

1 1 1 1 0


︸ ︷︷ ︸

n

Theorem (Ezra, Lovett 2015)

Few columns: If n = O(m), then with probability 1− exp(−Ω(t)).

herdisc(M) = O(
√
t log t).

Many columns: If n = Ω
((m

t

)
log
(m
t

))
then with pr. 1−

(m
t

)−Ω(1)
,

disc(M) ≤ 2

Why not herdisc for many columns? 4



General setup

• L ⊂ Rm is a nondegenerate lattice,

• X is a finitely supported r.v. on L such that spanZ X = L.

• n columns of M are drawn i.i.d from X .

Question

How does disc∗(M) behave for various ranges of n?
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This talk: n� m

For n� m the problem becomes a closest vector problem on L.

Definition

ρ∗(L) is the covering radius of L in the norm ‖ · ‖∗.

Fact

disc∗(M) ≤ 2ρ∗(L) with high probability as n→∞.

Proof: For every subset S ⊂ suppX , pick ES an even integer

combination of the elements of suppX that is 2ρ∗(L) away from
∑

S .

Let B be a bound on all these coefficients. Each element of suppX

appears B + 1 times with high probability in n; remove one of each

column that appeared an odd number of times and set the labels on the

remaining columns so that they sum to −ES . Näıvely, n has to be huge.

not tight!
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Question

For a given random variable X , how large must n be before

disc∗(M) ≤ 2ρ∗(L) with high probability?

t-sparse vectors, `∞

• L is {x ∈ Zm :
∑

xi ≡ 0 mod t}
• ρ∞(L) = 1

By fact, disc∞(M) ≤ 2 eventually.

EL15 showed this happens for n ≥ Ω(
(m
t

)
log
(m
t

)
). exponential

dependence on t!

This work: n = Ω(m3 log2 m)
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Our results



Our Results

Random t-sparse matrices:

Theorem (FS18)

Let M be a random t-sparse matrix. If n = Ω(m3 log2 m), then

disc∞(M) ≤ 2

with probability at least 1− O

(√
m log n

n

)
.

Actually usually disc∞(M) = 1.

Related work: Hoberg and Rothvoss ’18 obtained Ω(m2 logm) for M

with i.i.d {0, 1} entries.
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More generally

L,M,X as before, and define

1. L = maxv∈suppX ‖v‖2

e.g.
√
t for t-sparse

2. distortion R∗ = max‖v‖2=1 ‖v‖∗.
e.g.
√
m for ∗ =∞

3. spanningness: s(X ) “how far X is from proper sublattice.”

will be ≤ 1/m for t-sparse

Theorem (FS18)

Suppose EXX † = Im. Then disc∗(M) ≤ 2ρ∗(L) with probability

1− O

(
L
√

log n
n

)
for

n ≥ N = poly(m, s(X )−1,R∗, ρ∗(L), log detL).
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To apply the theorem to non-isotropic X ,

consider the transformed r.v. Σ−1/2X , where Σ = EXX †.
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Proof outline

Need to show: for most fixed M, the r.v. My , y ∈R {±1}n, gets within

2ρ∗(L) of the origin with positive probability.

Use local central limit theorem:

1. Intuitively the My (sampled at same time) approaches lattice

Gaussian:

Pr[My = λ] ∝≈ e−
1
2
λ†Σ−1λ

for λ ∈ M1 + 2L
2. For most M, My also behaves like this!

3. Then done: λ ∈ M1 + 2L contains, near origin, elements of ∗-norm

2ρ∗(L).
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Local central limit theorem

We propose an LCLT that takes a matrix parameter M, and show it

holds for most M.

• Proof of LCLT ≈ proof of LCLT in [Kuperberg, Lovett, Peled, ’12].

• Differences:

• theirs was for FIXED very wide matrices.

• Ours holds for MOST less wide matrices.
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Motivation for our LCLT

Obstruction to LCLTs:

If X lies on a proper sublattice L′ ( L, in trouble.

Need an approximate version of the assumption that this doesn’t happen.
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Spanningness

Definition

Dual lattice: L∗ := {θ : ∀λ ∈ L, 〈λ,θ〉 ∈ Z}.

Definition

fX (θ) :=
√

E[|〈X ,θ〉 mod 1|2], where mod1→ [−1/2, 1/2)

fX (θ) = 0 =⇒ θ ∈ L∗.
fX (θ) ≈ 0 =⇒ 〈X ,θ〉 ≈∈ Z.
Thus, obstruction is θ far from L∗ with fX (θ) small.
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Spanningness: recall fX (θ) :=
√

E[|〈X ,θ〉 mod 1|2]

Say θ is pseudodual if

fX (θ) ≤ 1

2
d(θ,L∗).

(Why pseudodual? Near L∗, fX (θ) ≈ d(θ,L∗).)

Spanningness:

s(X ) := inf
L∗ 63 θ pseudodual

fX (θ).
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CLT

For a matrix M, define the multidimensional Gaussian density

GM(λ) =
2m/2 det(L)

πm/2
√

det(MM†)
e−2λ†(MM†)−1λ

on Rm (Gaussian with covariance 1
2MM†).

Theorem (FS18)

With probability 1− O

(
L
√

log n
n

)
over the choice of M,

1. 1
2nIm � MM† � 2nIm

2. ∣∣∣∣ Pr
yi∈{±1/2}

[My = λ]− GM(λ)

∣∣∣∣ = GM(0) · O
(
m2L2

n

)
for all λ ∈ 1

2M + L.

prvided n ≥ N0 = poly(m, s(X )−1, L, log detL). 16



Proof of local limit theorem



Definition (Fourier transform!)

If Y is a random variable on Rm, Ŷ : Rm → C is

Ŷ (θ) = E[e2πi〈Y ,θ〉].

Fact (Fourier inversion:)

if Y takes values on L, then

Pr(Y = λ) = det(L)

∫
D
Ŷ (θ)e−2πi〈λ,θ〉dθ

Here D is any fundamental domain of the dual lattice L∗.

Neat/obvious: true even if Y takes values on an affine shift v + L.
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Take Fourier transform

For fixed M, Fourier transform of My for y ∈R {±1/2}?
Say i th column is x i .

M̂y(θ) = Ey

[
e2πi〈

∑n
j=1 y jx j ,θ〉

]
=

n∏
j=1

Ey j [e
2πiy j 〈x j ,θ〉]

=
n∏

j=1

cos(π〈x j , θ〉).
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Use Fourier inversion

Let ε > 0, to be picked with hindsight (think n−1/4)∣∣∣∣ 1

detL
Pr(My = λ)− GM(λ)

∣∣∣∣ =

∣∣∣∣∫
D
e−2πi〈λ,θ〉(M̂y(θ)− ĜM(θ))dθ

∣∣∣∣
≤
∫
B(ε)
|M̂y(θ)− ĜM(θ)|dθ (I1)

+

∫
Rm\B(ε)

|ĜM(θ)|dθ (I2)

+

∫
D\B(ε)

|M̂y(θ)|dθ (I3)

If D ⊂ B(ε). D is the Voronoi cell in L∗.
rest of the proof is to show these are small!

• First two easy from the eigenvalue property.

• EM [I3] ≤ e−ε
2n if ε ≤ s(X ).
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Applying the main theorem



Random t-sparse matrices

From now on we just want to bound the spanningness. We’ll do it for

t-sparse vectors - the framework is that of [KLP12].

Lemma

Let X be a random t-sparse vector. Then s(X ) = Ω( 1
m ).
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Framework from [KLP12] for bounding spanningness

Recall what s(X ) ≥ 1
m means. We need to show that if θ is pseudodual,

i.e., fX (θ) ≤ ‖θ‖/2 but not dual, then fX (θ) ≥ α/m.

Proof outline: (recall fX (θ) :=
√

E[|〈X ,θ〉 mod 1|2])

• if all |〈x ,θ〉 mod 1| ≤ 1/4 for all x ∈ suppX , then

fX (θ) ≥ d(θ,L∗), so θ not pseudodual unless dual.

• X is 1
2m -spreading: for all θ,

fX (θ) ≥ 1

2m
sup

x∈suppX
|〈x ,θ〉 mod 1|

Together, if θ is pseudodual, then fX (θ) ≥ 1
8m .
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Showing X is spreading

1. The argument in [KLP12] shows that X is 1
(m log m)3/2 -spreading, but

is much more general.

2. A direct proof yields the 1
m .
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Random unit vectors

A result for a non-lattice distribution:

Theorem (FS18)

Let M be a matrix with i.i.d random unit vector columns. Then

discM = O(e−
√

n
m3 )

with probability at least 1− O

(
L
√

log n
n

)
provided n = Ω(m3 log2 m),
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Open problems

• Can the colorings guaranteed by our theorems be produced

efficiently? The probability a random coloring is good decreases with

n as
√
n
−m

, which is not good enough.

• As a function of m, how many columns are required such that

disc(M) ≤ 2 for t-sparse vectors with high probability?
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Thank you!
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