On the Discrepancy of Random Matrices with Many Columns

Cole Franks and Michael Saks

March 23, 2019

Discrepancy

Discrepancy

- discrepancy of a matrix: extent to which the rows can be simultaneously split into two equal parts.
- Formally, let $\|\cdot\|_{*}$ be a norm, and let

$$
\operatorname{disc}_{*}(M)=\min _{v \in\{+1,-1\}^{n}}\|M v\|_{*}
$$

(M is an $m \times n$ matrix).
Goal: prove $\operatorname{disc}_{*}(M)$ is small in certain situations, and find the good assignments v efficiently.

Examples and Applications

$$
\operatorname{disc}_{\infty}\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]=1
$$

- Extractors: the best extractor for two independent n-bit sources with min-entropy k has error rate $\operatorname{disc}_{\infty}(M)$ where M is a

1. $\left(\begin{array}{l}2^{n}\end{array}\right)^{2} \times 2^{2 n}$ matrix
2. with one row for each rectangle $A \times B \subset\{0,1\}^{n} \times\{0,1\}^{n}$ with

$$
|A|=|B|=2^{k},
$$

3. each row is a $2^{n} \times 2^{n}$ matrix with (x, y) entry equal to $\frac{1}{2^{2 k}} 1_{A}(x) 1_{B}(y)$. number of rows is \gg number of columns, random coloring optimal but useless!

Upper bounds

Definition

herdisc(M): maximum discrepancy of any subset of columns of M.

Beck-Fiala Theorem: $M_{i j} \in[-1,1]$ and $\leq t$ nonzero entries per column,

$$
\text { herdisc }(M) \leq 2 t-1
$$

Beck-Fiala Conjecture: If M as above,

$$
\operatorname{herdisc}(M)=O(\sqrt{t})
$$

Komlos Conjecture: M with unit vector columns,

$$
\operatorname{herdisc}(M)=O(1)
$$

Banaczszyk's Theorem: If M as above,

$$
\operatorname{herdisc}(M)=O(\sqrt{\log m})
$$

Discrepancy of random matrices

Let M be a random t-sparse matrix

$$
m \underbrace{\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right]}_{n}
$$

Theorem (Ezra, Lovett 2015)

Few columns: If $n=O(m)$, then with probability $1-\exp (-\Omega(t))$.

$$
\text { herdisc }(M)=O(\sqrt{t \log t})
$$

Many columns: If $n=\Omega\left(\binom{m}{t} \log \binom{m}{t}\right)$ then with pr. $1-\binom{m}{t}^{-\Omega(1)}$,

$$
\operatorname{disc}(M) \leq 2
$$

Why not herdisc for many columns?

General setup

- $\mathcal{L} \subset \mathbb{R}^{m}$ is a nondegenerate lattice,
- X is a finitely supported r.v. on \mathcal{L} such that $\operatorname{span}_{\mathbb{Z}} X=\mathcal{L}$.
- n columns of M are drawn i.i.d from X.

Question

How does $\operatorname{disc}_{*}(M)$ behave for various ranges of n ?

This talk: $n \gg m$

For $n \gg m$ the problem becomes a closest vector problem on \mathcal{L}.

Definition

$\rho_{*}(\mathcal{L})$ is the covering radius of \mathcal{L} in the norm $\|\cdot\|_{*}$.

Fact $\operatorname{disc}_{*}(M) \leq 2 \rho_{*}(\mathcal{L})$ with high probability as $n \rightarrow \infty$.

Proof: For every subset $S \subset \operatorname{supp} X$, pick E_{S} an even integer combination of the elements of supp X that is $2 \rho_{*}(\mathcal{L})$ away from $\sum S$. Let B be a bound on all these coefficients. Each element of supp X appears $B+1$ times with high probability in n; remove one of each column that appeared an odd number of times and set the labels on the remaining columns so that they sum to $-E_{S}$. Naïvely, n has to be huge. not tight!

Question

For a given random variable X, how large must n be before $\operatorname{disc}_{*}(M) \leq 2 \rho_{*}(\mathcal{L})$ with high probability?
t-sparse vectors, ℓ_{∞}

- \mathcal{L} is $\left\{\boldsymbol{x} \in \mathbb{Z}^{m}: \sum x_{i} \equiv 0 \bmod t\right\}$
- $\rho_{\infty}(\mathcal{L})=1$

By fact, $\operatorname{disc}_{\infty}(M) \leq 2$ eventually.
EL15 showed this happens for $n \geq \Omega\left(\binom{m}{t} \log \binom{m}{t}\right)$. exponential dependence on t !
This work: $n=\Omega\left(m^{3} \log ^{2} m\right)$

Our results

Our Results

Random t-sparse matrices:

Theorem (FS18)

Let M be a random t-sparse matrix. If $n=\Omega\left(m^{3} \log ^{2} m\right)$, then

$$
\operatorname{disc}_{\infty}(M) \leq 2
$$

with probability at least $1-O\left(\sqrt{\frac{m \log n}{n}}\right)$.
Actually usually $\operatorname{disc}_{\infty}(M)=1$.
Related work: Hoberg and Rothvoss '18 obtained $\Omega\left(m^{2} \log m\right)$ for M with i.i.d $\{0,1\}$ entries.

More generally

\mathcal{L}, M, X as before, and define

1. $L=\max _{v \in \operatorname{supp}} X\|v\|_{2}$

$$
\text { e.g. } \sqrt{t} \text { for } t \text {-sparse }
$$

2. distortion $R_{*}=\max _{\|v\|_{2}=1}\|v\|_{*}$.

$$
\text { e.g. } \sqrt{m} \text { for } *=\infty
$$

3. spanningness: $s(X)$ "how far X is from proper sublattice."
will be $\leq 1 / m$ for t-sparse

Theorem (FS18)

Suppose $\mathbb{E} X X^{\dagger}=I_{m}$. Then $\operatorname{disc}_{*}(M) \leq 2 \rho_{*}(\mathcal{L})$ with probability
$1-O\left(L \sqrt{\frac{\log n}{n}}\right)$ for

$$
n \geq N=\operatorname{poly}\left(m, s(X)^{-1}, R_{*}, \rho_{*}(\mathcal{L}), \log \operatorname{det} \mathcal{L}\right)
$$

To apply the theorem to non-isotropic X, consider the transformed r.v. $\Sigma^{-1 / 2} X$, where $\Sigma=\mathbb{E} X X^{\dagger}$.

Proof outline

Need to show: for most fixed M, the r.v. $M \boldsymbol{y}, \boldsymbol{y} \in_{R}\{ \pm 1\}^{n}$, gets within $2 \rho_{*}(\mathcal{L})$ of the origin with positive probability.
Use local central limit theorem:

1. Intuitively the $M y$ (sampled at same time) approaches lattice Gaussian:

$$
\operatorname{Pr}[M y=\lambda] \propto \approx e^{-\frac{1}{2} \lambda^{\dagger} \Sigma^{-1} \lambda}
$$

for $\lambda \in M 1+2 \mathcal{L}$
2. For most $M, M y$ also behaves like this!
3. Then done: $\boldsymbol{\lambda} \in M \mathbf{1}+2 \mathcal{L}$ contains, near origin, elements of $*$-norm $2 \rho_{*}(\mathcal{L})$.

Local central limit theorem

We propose an LCLT that takes a matrix parameter M, and show it holds for most M.

- Proof of LCLT \approx proof of LCLT in [Kuperberg, Lovett, Peled, '12].
- Differences:
- theirs was for FIXED very wide matrices.
- Ours holds for MOST less wide matrices.

Motivation for our LCLT

Obstruction to LCLTs:

If X lies on a proper sublattice $\mathcal{L}^{\prime} \subsetneq \mathcal{L}$, in trouble.
Need an approximate version of the assumption that this doesn't happen.

Spanningness

Definition

Dual lattice: $\mathcal{L}^{*}:=\{\boldsymbol{\theta}: \forall \boldsymbol{\lambda} \in \mathcal{L},\langle\boldsymbol{\lambda}, \boldsymbol{\theta}\rangle \in \mathbb{Z}\}$.

Definition

$f_{X}(\boldsymbol{\theta}):=\sqrt{\mathbb{E}\left[|\langle X, \boldsymbol{\theta}\rangle \bmod 1|^{2}\right]}$, where $\bmod 1 \rightarrow[-1 / 2,1 / 2)$
$f_{X}(\boldsymbol{\theta})=0 \Longrightarrow \boldsymbol{\theta} \in \mathcal{L}^{*}$.
$f_{X}(\boldsymbol{\theta}) \approx 0 \Longrightarrow\langle X, \boldsymbol{\theta}\rangle \approx \in \mathbb{Z}$.
Thus, obstruction is $\boldsymbol{\theta}$ far from \mathcal{L}^{*} with $f_{X}(\boldsymbol{\theta})$ small.

Spanningness: recall $f_{X}(\theta):=\sqrt{\mathbb{E}\left[|\langle X, \theta\rangle \bmod 1|^{2}\right]}$

Say θ is pseudodual if

$$
f_{X}(\boldsymbol{\theta}) \leq \frac{1}{2} d\left(\theta, \mathcal{L}^{*}\right)
$$

(Why pseudodual? Near $\left.\mathcal{L}^{*}, f_{X}(\boldsymbol{\theta}) \approx d\left(\theta, \mathcal{L}^{*}\right).\right)$

Spanningness:

$$
s(X):=\inf _{\mathcal{L}^{*} \nexists \theta} \operatorname{pseudodual} f_{X}(\theta)
$$

CLT

For a matrix M, define the multidimensional Gaussian density

$$
G_{M}(\lambda)=\frac{2^{m / 2} \operatorname{det}(\mathcal{L})}{\pi^{m / 2} \sqrt{\operatorname{det}\left(M M^{\dagger}\right)}} e^{-2 \lambda^{\dagger}\left(M M^{\dagger}\right)^{-1} \lambda}
$$

on \mathbb{R}^{m} (Gaussian with covariance $\frac{1}{2} M M^{\dagger}$).

Theorem (FS18)

With probability $1-O\left(L \sqrt{\frac{\log n}{n}}\right)$ over the choice of M,

1. $\frac{1}{2} n I_{m} \preceq M M^{\dagger} \preceq 2 n I_{m}$
2.

$$
\left|\operatorname{Pr}_{y_{i} \in\{ \pm 1 / 2\}}[M \boldsymbol{y}=\lambda]-G_{M}(\lambda)\right|=G_{M}(0) \cdot O\left(\frac{m^{2} L^{2}}{n}\right)
$$

$$
\text { for all } \boldsymbol{\lambda} \in \frac{1}{2} M+\mathcal{L} .
$$

prvided $n \geq N_{0}=\operatorname{poly}\left(m, s(X)^{-1}, L, \log \operatorname{det} \mathcal{L}\right)$.

Proof of local limit theorem

Definition (Fourier transform!)

If Y is a random variable on $\mathbb{R}^{m}, \widehat{Y}: \mathbb{R}^{m} \rightarrow \mathbb{C}$ is

$$
\widehat{Y}(\boldsymbol{\theta})=\mathbb{E}\left[e^{2 \pi i\langle Y, \boldsymbol{\theta}\rangle}\right]
$$

Fact (Fourier inversion:)

if Y takes values on \mathcal{L}, then

$$
\operatorname{Pr}(Y=\boldsymbol{\lambda})=\operatorname{det}(\mathcal{L}) \int_{D} \widehat{Y}(\boldsymbol{\theta}) e^{-2 \pi i(\boldsymbol{\lambda}, \boldsymbol{\theta}\rangle} d \boldsymbol{\theta}
$$

Here D is any fundamental domain of the dual lattice \mathcal{L}^{*}.
Neat/obvious: true even if Y takes values on an affine shift $v+\mathcal{L}$.

Take Fourier transform

For fixed M, Fourier transform of $M \boldsymbol{y}$ for $\boldsymbol{y} \in_{R}\{ \pm 1 / 2\}$?
Say $i^{\text {th }}$ column is x_{i}.

$$
\begin{aligned}
\widehat{M \boldsymbol{y}}(\boldsymbol{\theta}) & =\mathbb{E}_{\boldsymbol{y}}\left[e^{2 \pi i\left\langle\sum_{j=1}^{n} y_{j} x_{j}, \boldsymbol{\theta}\right\rangle}\right] \\
& =\prod_{j=1}^{n} \mathbb{E}_{y_{j}}\left[e^{2 \pi i y_{j}\left\langle x_{j}, \theta\right\rangle}\right] \\
& =\prod_{j=1}^{n} \cos \left(\pi\left\langle x_{j}, \theta\right\rangle\right) .
\end{aligned}
$$

Use Fourier inversion

Let $\varepsilon>0$, to be picked with hindsight (think $n^{-1 / 4}$)

$$
\begin{align*}
\left|\frac{1}{\operatorname{det} \mathcal{L}} \operatorname{Pr}(M y=\boldsymbol{\lambda})-G_{M}(\boldsymbol{\lambda})\right| & =\left|\int_{D} e^{-2 \pi i\langle\lambda, \theta\rangle}\left(\widehat{M y}(\boldsymbol{\theta})-\widehat{G_{M}}(\boldsymbol{\theta})\right) d \boldsymbol{\theta}\right| \\
& \leq \int_{B(\varepsilon)}\left|\widehat{M y}(\boldsymbol{\theta})-\widehat{G_{M}}(\boldsymbol{\theta})\right| d \boldsymbol{\theta} \tag{1}\\
& +\int_{\mathbb{R}^{m} \backslash B(\varepsilon)}\left|\widehat{G_{M}}(\boldsymbol{\theta})\right| d \boldsymbol{\theta} \tag{2}\\
& +\int_{D \backslash B(\varepsilon)}|\widehat{M y}(\boldsymbol{\theta})| d \boldsymbol{\theta} \tag{1/3}
\end{align*}
$$

If $D \subset B(\varepsilon) . D$ is the Voronoi cell in \mathcal{L}^{*}.

rest of the proof is to show these are small!

- First two easy from the eigenvalue property.
- $\mathbb{E}_{M}\left[I_{3}\right] \leq e^{-\varepsilon^{2} n}$ if $\varepsilon \leq s(X)$.

Applying the main theorem

Random t-sparse matrices

From now on we just want to bound the spanningness. We'll do it for t-sparse vectors - the framework is that of [KLP12].
Lemma
Let X be a random t-sparse vector. Then $s(X)=\Omega\left(\frac{1}{m}\right)$.

Framework from [KLP12] for bounding spanningness

Recall what $s(X) \geq \frac{1}{m}$ means. We need to show that if θ is pseudodual, i.e., $f_{X}(\boldsymbol{\theta}) \leq\|\boldsymbol{\theta}\| / 2$ but not dual, then $f_{X}(\boldsymbol{\theta}) \geq \alpha / m$.

Proof outline: $\left(\right.$ recall $\left.f_{X}(\boldsymbol{\theta}):=\sqrt{\mathbb{E}\left[|\langle X, \boldsymbol{\theta}\rangle \bmod 1|^{2}\right]}\right)$

- if all $|\langle\boldsymbol{x}, \boldsymbol{\theta}\rangle \bmod 1| \leq 1 / 4$ for all $x \in \operatorname{supp} X$, then $f_{X}(\boldsymbol{\theta}) \geq d\left(\boldsymbol{\theta}, \mathcal{L}^{*}\right)$, so $\boldsymbol{\theta}$ not pseudodual unless dual.
- X is $\frac{1}{2 m}$-spreading: for all θ,

$$
f_{X}(\boldsymbol{\theta}) \geq \frac{1}{2 m} \sup _{x \in \operatorname{supp} X}|\langle\boldsymbol{x}, \boldsymbol{\theta}\rangle \bmod 1|
$$

Together, if $\boldsymbol{\theta}$ is pseudodual, then $f_{X}(\boldsymbol{\theta}) \geq \frac{1}{8 m}$.

Showing X is spreading

1. The argument in [KLP12] shows that X is $\frac{1}{(m \log m)^{3 / 2}}$-spreading, but is much more general.
2. A direct proof yields the $\frac{1}{m}$.

Random unit vectors

A result for a non-lattice distribution:

Theorem (FS18)

Let M be a matrix with i.i.d random unit vector columns. Then

$$
\operatorname{disc} M=O\left(e^{-\sqrt{\frac{n}{m^{3}}}}\right)
$$

with probability at least $1-O\left(L \sqrt{\frac{\log n}{n}}\right)$ provided $n=\Omega\left(m^{3} \log ^{2} m\right)$,

Open problems

- Can the colorings guaranteed by our theorems be produced efficiently? The probability a random coloring is good decreases with n as \sqrt{n}^{-m}, which is not good enough.
- As a function of m, how many columns are required such that $\operatorname{disc}(M) \leq 2$ for t-sparse vectors with high probability?

Thank you!

