Towards a theory of non-commutative optimization: geodesic 1st and 2nd order methods for moment maps and polytopes

Peter Bürgisser Cole Franks Ankit Garg Rafael Oliveira Michael Walter Avi Wigderson • Study algorithmic questions about the action of **groups**, such as the group of invertible matrices, on **vector spaces**.

• Primary goal: provide a unified framework for optimizing the ℓ_2 norm and its gradient over group orbits.

• Generalize familiar first and second order methods to work in the non-Euclidean geometry of the group.

- 1. Definitions and examples of group actions
- 2. Problem statements and results
- 3. The algorithms
- 4. Open questions

Group actions

Group actions

• Group such as

 $G = GL(n) = \{$ invertible $n \times n$ matrices $\}$.

or G = diagonal matrices, or $G = GL(n) \times GL(n)$

• Action on vector space $V (= \mathbb{C}^m)$:

homomorphism $\mathbf{G} \to \mathbf{GL}(V)$ ($m \times m$ invertible matrices),

• **g** acting on **v** written

 $g \cdot v$.

Conjugation

G = GL(n), V = Mat(n),

$$g \cdot A = gAg^{-1}$$

Operator scaling: $G = GL(n) \times GL(n)$, $V = Mat(n)^k$ by

$$(g,h)\cdot(A_1,\ldots,A_k)=gA_1h^T,\ldots,gA_kh^T.$$

Tensor scaling: $G = GL(n)^3$, $V = (\mathbb{C}^n)^{\otimes 3}$

$$(g_1, g_2, g_3) \cdot |\phi\rangle = g_1 \otimes g_2 \otimes g_3 |\phi\rangle$$

Norm optimization

Given a vector $\mathbf{v} \in V$, compute

 $\inf_{\boldsymbol{g}\in\boldsymbol{\mathsf{G}}}\|\boldsymbol{g}\cdot\boldsymbol{\mathsf{v}}\|.$

Many surprising applications!

- Combinatorics: approximating the permanent [LSW98]
- Functional analysis: Brascamp-Lieb inequalities [CCT05]
- Machine learning: radial isotropic position [MH13]
- **Polynomial identity testing:** noncommutative identity testing [GGOW16]
- Quantum information: one body quantum marginal problem [BFGGOW18]
- Computational invariant theory: null cone problem

Example: perfect matchings and matrix scaling

Let

 $G = \{ pairs of diagonal matrices with det 1 \}$

act on matrices A by $(X, Y) \cdot A = XAY$.

Ancient theorem

1. **H** has a perfect matching \iff

2.
$$\inf_{(X,Y)\in G} \|XA_HY\|_F > 0 \iff$$

3. exist X, Y diagonal with $B = XA_H Y$ doubly stochastic*:

diag
$$BB^T = I$$
, diag $B^TB = I$.

Why? $\nabla ||XAY||_F = (\text{diag } AA^T - I, \text{diag } A^TA - I)!$ "row and column sums"

 $A_{H} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

Noncommutative analogue of ancient theorem

Analogue of row and column sums: **gradient** of (log) norm. For historical reasons, called **moment map**, written

$$\boldsymbol{\mu}(\boldsymbol{v}) := \nabla_{\boldsymbol{\chi}} \log \| \boldsymbol{e}^{\boldsymbol{\chi}} \cdot \boldsymbol{v} \|.$$

Matrix scaling: $\mu(A) = \frac{1}{\|A\|_F^2} (\text{diag } AA^T - I, \text{diag } A^TA - I)$ Conjugation: $\mu(A) = \frac{1}{\|A\|_F^2} (AA^T - A^TA)$

Ancient theorem

1.
$$\left[\inf_{(X,Y)\in G} \|XA_HY\|_F > 0\right] \iff$$

- 2. A_H has (approx) doubly stochastic scalings \iff
- 3. **H** has perfect matching.

Kempf-Ness/Hilbert Mumford

$$\lim_{g \in \mathbf{G}} \|g \cdot \mathbf{v}\| > 0. \iff$$

2.
$$\inf_{g\in \mathbf{G}} \|\boldsymbol{\mu}(g\cdot \mathbf{v})\| = 0.$$

3. $\iff \exists$ homogeneous invariant polynomial nonzero on *v*.

Problem statements and results

Back to the problems

Set $F(g) = \log ||g \cdot v||$, and set OPT := $\inf_{g \in G} F(g)$.

Norm optimization

Given v, produce g^* with $F(g^*) \leq OPT + \varepsilon$ or determine that $OPT = -\infty$.

 $poly(log(1/\varepsilon))$ algorithm for special case; [AGLOW '17], algebraic algorithms for decision version [DM '19, IQS '17].

While we want to approximately optimize F, often the easier task of solving $\nabla F = \mu \approx 0$ is still quite useful.

Scaling

Given \mathbf{v} and $\boldsymbol{\varepsilon} > 0$, produce g with $\|\boldsymbol{\mu}(g \cdot \boldsymbol{v})\| < \boldsymbol{\varepsilon}$ or conclude that OPT = $-\infty$.

poly($1/\varepsilon$) time for operators [GGOW16], tensors [BFGGOW18]

The commutative case: Polynomial optimization

Suppose *p* is a Laurent polynomial *p* with nonnegative coefficients. Ancient theorem

$$\inf_{x_i>0} p(x) > 0 \iff 0 \in \operatorname{conv}(\Omega),$$

 $\Omega \subset \mathbb{Z}^n$, set of exponents in polynomial.

Easy to optimize, but what about with **oracle access** to p, ∇p ?

Weight margin Γ ; Weight norm N

- Γ : The closest the convex hull of a subset of Ω can come to the origin without containing it.
- **N** : Maximum ℓ_2 norm of element of Ω .

[SV17:] can optimize in $poly(1/\Gamma, N, log(1/\varepsilon))$. with oracle access.

Contributions

Before our work, ad hoc range of algebraic/optimization algorithms. New work implies all others, + new efficient algorithms

First order algorithm [BFGOWW 19]

Given oracle access to μ , outputs g with $||\mu(g \cdot v)|| \le \varepsilon$ in time poly(N, OPT, $1/\varepsilon$) or concludes that OPT = $-\infty$.

Second order algorithm [BFGOWW 19]

Given oracle access to μ , Hessian, outputs g with $\log ||g \cdot v|| \leq OPT + \varepsilon$ in time poly $(1/\Gamma, N, OPT, \log(1/\varepsilon))$ or concludes that $OPT = -\infty$.

 $|OPT| \le poly$ for reasonable input models. Size of $1/\Gamma$ explains previous hard/easy cases: $\le n^{3/2}$ for operator scaling, conjugation, $\ge 2^{n/3}$ for tensor scaling. Algorithms

Geodesic convexity

Set $F(g) = \log ||g \cdot v||$.

```
F(e^{X}) not convex in Hermitian X!
```

but $F(e^{tX})$ is convex in t, i.e. $F(e^{X})$ convex along **lines**!

 $F(e^{X})$ for a subspace of 2 × 2 matrices

Geodesics:

analogues of lines in a non-Euclidean space. In **G** they are of the form

 $e^{tX}g$ for X hermitian

Then *F* geodesically convex: convex along geodesics.

Geodesic gradient descent for scaling

Follow steepest **geodesic** at each step: steepest is

 $\nabla_{X}F(e^{X}g)=\boldsymbol{\mu}(g\cdot v)\,.$

moment map = geodesic gradient!

Algorithm

Initially g = l, step size η . For i = 1...T,

• Set
$$H = \mu(g \cdot v)$$

•
$$g \leftarrow e^{-\eta H}g$$
.

Analysis

We want to show that at some iteration, the geodesic gradient

 $\mu(g \cdot v)$

is small.

F is N-smooth

Second derivative bounded along geodesics:

 $\partial_t^2 F(e^{tX}g) \leq N$

for unit norm X

Standard analysis carries over!

Theorem

Take $\eta = 1/N$, and $T \ge \frac{2N}{\varepsilon^2} |OPT|$, then at some step $\|\mu(g \cdot v)\| \le \varepsilon$.

Trust region method: consider

Q(X) second order approx for $F(e^Xg)$.

Algorithm

Set g = I. For i = 1...T,

• Choose Hermitian *H* to minimize Q(H) subject to $||H||_F \leq \eta$.

• Set $g \leftarrow e^H g$.

Say F satisfies diameter bound D if

$$\inf_{|X||_{F}\leq D}F(e^{X})\leq \mathsf{OPT}+\varepsilon.$$

Standard; [AGLOW17, CMTV17]

F can be regularized such that the algorithm takes $poly(log(1/\varepsilon), D, OPT)$ time.

Diameter bounds

Diameter bounded for large weight margin! $D \leq \text{poly}(1/\Gamma)$.

Analogue of (r, c)-scaling; ask that μ take prescribed values. μ takes value in **Hermitian matrices**, but...

Surprising and beautiful theorem [Bri87, NM84] Eigenvalues of $\mu(g \cdot v)$ range over a convex polytope $\Delta(v)$!

 $\Delta(v)$ can have exponentially many facets and vertices; examples include **polymatroids, matching polytopes, permutahedra**.

Weak moment polytope membership

Given v, Decide if $p \in \Delta$ or p at least ε -far from $\Delta(v)$.

Our work gives a poly $(1/\varepsilon)$ time algorithm for weak membership. To put decision problem in *P*, need poly $(\log(1/\varepsilon))!$ Very easy optimization algorithms seem to carry over: **alternating minimization, geodesic gradient descent, trust regions.**

What about the more powerful algorithms?

- Geodesic ellipsoid method? There is one [*R*18], but oracle calls take forever.
- Geodesic interior point methods?

Solve norm minimization in $poly(log(1/\varepsilon))$ time?

Thanks!