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Overview

• Study algorithmic questions about the action of groups, such as
the group of invertible matrices, on vector spaces.

• Primary goal: provide a unified framework for optimizing the ℓ2
norm and its gradient over group orbits.

• Generalize familiar first and second order methods to work in
the non-Euclidean geometry of the group.
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Group actions



Group actions

• Group such as

G = GL(n) = {invertible n× n matrices}.

or G = diagonal matrices, or G = GL(n)× GL(n)
• Action on vector space V(= Cm):

homomorphism G→ GL(V) (m×m invertible matrices),

• g acting on v written
g · v.

Conjugation
G = GL(n), V = Mat(n),

g · A = gAg−1
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More examples

Operator scaling: G = GL(n)× GL(n), V = Mat(n)k by

(g,h) · (A1, . . . ,Ak) = gA1hT, . . . ,gAkhT.

Tensor scaling: G = GL(n)3, V = (Cn)⊗3

(g1,g2,g3) · |ϕ⟩ = g1 ⊗ g2 ⊗ g3 |ϕ⟩

4



Norm optimization

Given a vector v ∈ V, compute

inf
g∈G
∥g · v∥.

Many surprising applications!

• Combinatorics: approximating the permanent [LSW98]
• Functional analysis: Brascamp-Lieb inequalities [CCT05]
• Machine learning: radial isotropic position [MH13]
• Polynomial identity testing: noncommutative identity testing
[GGOW16]

• Quantum information: one body quantum marginal problem
[BFGGOW18]

• Computational invariant theory: null cone problem
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Example: perfect matchings and matrix scaling

Let
G = {pairs of diagonal matrices with det 1}

act on matrices A by (X, Y) · A = XAY.

Ancient theorem

1. H has a perfect matching ⇐⇒
2. inf

(X,Y)∈G
∥XAHY∥F > 0 ⇐⇒

3. exist X, Y diagonal with B = XAHY doubly
stochastic*:

diag BBT = I, diag BTB = I.

AH =

1 1 1
1 0 0
1 0 1



Why? ∇∥XAY∥F = (diag AAT − I, diag ATA− I)! “row and column sums” 6



Noncommutative analogue of ancient theorem

Analogue of row and column sums: gradient of (log) norm.
For historical reasons, called moment map, written

µ(v) := ∇X log ∥eX · v∥.

Matrix scaling: µ(A) = 1
∥A∥2F

(diag AAT − I, diag ATA− I)
Conjugation: µ(A) = 1

∥A∥2F
(AAT − ATA)

Ancient theorem

1. inf
(X,Y)∈G

∥XAHY∥F > 0 ⇐⇒

2. AH has (approx) doubly
stochastic scalings ⇐⇒

3. H has perfect matching.

Kempf-Ness/Hilbert Mumford

1. inf
g∈G
∥g · v∥ > 0. ⇐⇒

2. inf
g∈G
∥µ(g · v)∥ = 0 .

3. ⇐⇒ ∃ homogeneous invariant
polynomial nonzero on v.
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Problem statements and results



Back to the problems

Set F(g) = log ∥g · v∥, and set OPT := infg∈G F(g).

Norm optimization

Given v, produce g∗ with F(g∗) ≤ OPT+ ε or determine that
OPT = −∞.

poly(log(1/ε)) algorithm for special case; [AGLOW ’17], algebraic
algorithms for decision version [DM ’19, IQS ’17].

While we want to approximately optimize F, oǌten the easier task of
solving ∇F = µ ≈ 0 is still quite useful.
Scaling

Given v and ε > 0, produce g with ∥µ(g · v)∥ < ε or conclude that
OPT = −∞.

poly(1/ε) time for operators [GGOW16], tensors [BFGGOW18] 8



The commutative case: Polynomial optimization

Suppose p is a Laurent polynomial p with nonnegative coefficients.
Ancient theorem

inf
xi>0

p(x) > 0 ⇐⇒ 0 ∈ conv(Ω),

Ω ⊂ Zn, set of exponents in polynomial.

Easy to optimize, but what about with oracle access to p, ∇p?
Weight margin Γ; Weight norm N

Γ : The closest the convex hull of a subset of Ω can come to the
origin without containing it.

N : Maximum ℓ2 norm of element of Ω.

[SV17:] can optimize in poly(1/Γ,N, log(1/ε)). with oracle access.
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Contributions

Before our work, ad hoc range of algebraic/optimization algorithms.
New work implies all others, + new efficient algorithms
First order algorithm [BFGOWW 19]

Given oracle access to µ, outputs g with ∥µ(g · v)∥ ≤ ε in time
poly(N,OPT, 1/ε) or concludes that OPT = −∞.

Second order algorithm [BFGOWW 19]
Given oracle access to µ, Hessian, outputs g with
log ∥g · v∥ ≤ OPT+ ε in time poly(1/Γ,N,OPT, log(1/ε)) or
concludes that OPT = −∞.

|OPT| ≤ poly for reasonable input models.
Size of 1/Γ explains previous hard/easy cases:
≤ n3/2 for operator scaling, conjugation, ≥ 2n/3 for tensor scaling.
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Algorithms



Geodesic convexity

Set F(g) = log ∥g · v∥.

F(eX) not convex in Hermitian X!

but F(etX) is convex in t, i.e. F(eX) convex
along lines! F(eX) for a subspace of 2× 2 matrices

Geodesics:
analogues of lines in a non-Euclidean space.
In G they are of the form

etXg for X hermitian

Then F geodesically convex: convex along
geodesics.

hyperbolic plane
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Geodesic gradient descent for scaling

Follow steepest geodesic
at each step: steepest is

∇XF(eXg) = µ(g · v) .

moment map = geodesic
gradient!

Algorithm
Initially g = I, step size η.
For i = 1...T,

• Set H = µ(g · v)
• g← e−ηHg.
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Analysis

We want to show that at some iteration, the geodesic gradient

µ(g · v)

is small.
F is N-smooth
Second derivative bounded along geodesics:

∂2
t F(etXg) ≤ N

for unit norm X

Standard analysis carries over!
Theorem
Take η = 1/N, and T ≥ 2N

ε2
|OPT|, then at some step ∥µ(g · v)∥ ≤ ε.
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Second order:

Trust region method: consider

Q(X) second order approx for F(eXg).

Algorithm
Set g = I. For i = 1...T,

• Choose Hermitian H to minimize Q(H) subject to ∥H∥F ≤ η.
• Set g← eHg.
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Second order analysis

Say F satisfies diameter bound D if

inf
∥X∥F≤D

F(eX) ≤ OPT+ ε.

Standard; [AGLOW17, CMTV17]
F can be regularized such that the algorithm takes
poly(log(1/ε),D,OPT) time.

Diameter bounds
Diameter bounded for large weight margin! D ≤ poly(1/Γ).
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Moment polytopes

Analogue of (r, c)-scaling; ask that µ take prescribed values.

µ takes value in Hermitian matrices, but...

Surprising and beautiful theorem [Bri87, NM84]
Eigenvalues of µ(g · v) range over a convex polytope ∆(v)!

∆(v) can have exponentially many facets and vertices; examples
include polymatroids, matching polytopes, permutahedra.
Weak moment polytope membership
Given v, Decide if p ∈ ∆ or p at least ε-far from ∆(v).

Our work gives a poly(1/ε) time algorithm for weak membership.
To put decision problem in P, need poly(log(1/ε))!
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Open problems

Very easy optimization algorithms seem to carry over: alternating
minimization, geodesic gradient descent, trust regions.

What about the more powerful algorithms?

• Geodesic ellipsoid method? There is one [R18], but oracle calls
take forever.

• Geodesic interior point methods?

Solve norm minimization in poly(log(1/ε)) time?
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Thanks!
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