Towards a theory of non-commutative optimization: geodesic 1st and 2nd order methods for moment maps and polytopes

Peter Bürgisser
Cole Franks
Ankit Garg
Rafael Oliveira
Michael Walter
Avi Wigderson

Overview

- Study algorithmic questions about the action of groups, such as the group of invertible matrices, on vector spaces.
- Primary goal: provide a unified framework for optimizing the ℓ_{2} norm and its gradient over group orbits.
- Generalize familiar first and second order methods to work in the non-Euclidean geometry of the group.

Outline

1. Definitions and examples of group actions
2. Problem statements and results
3. The algorithms
4. Open questions

Group actions

Group actions

- Group such as

$$
G=G L(n)=\{\text { invertible } n \times n \text { matrices }\}
$$

or $G=$ diagonal matrices, or $G=G L(n) \times G L(n)$

- Action on vector space $V\left(=\mathbb{C}^{m}\right)$:
homomorphism $G \rightarrow G L(V) \quad(m \times m$ invertible matrices $)$,
- g acting on v written

$$
g \cdot v
$$

Conjugation
$G=G L(n), V=\operatorname{Mat}(n)$,

$$
g \cdot A=g A g^{-1}
$$

More examples

Operator scaling: $\mathrm{G}=\mathrm{GL}(n) \times \mathrm{GL}(n), V=\operatorname{Mat}(n)^{k}$ by

$$
(g, h) \cdot\left(A_{1}, \ldots, A_{k}\right)=g A_{1} h^{\top}, \ldots, g A_{k} h^{\top} .
$$

Tensor scaling: $G=G L(n)^{3}, V=\left(\mathbb{C}^{n}\right)^{\otimes 3}$

$$
\left(g_{1}, g_{2}, g_{3}\right) \cdot|\phi\rangle=g_{1} \otimes g_{2} \otimes g_{3}|\phi\rangle
$$

Norm optimization

Given a vector $v \in V$, compute

$$
\inf _{g \in G}\|g \cdot v\| .
$$

Many surprising applications!

- Combinatorics: approximating the permanent [LSW98]
- Functional analysis: Brascamp-Lieb inequalities [CCT05]
- Machine learning: radial isotropic position [MH13]
- Polynomial identity testing: noncommutative identity testing [GGOW16]
- Quantum information: one body quantum marginal problem [BFGGOW18]
- Computational invariant theory: null cone problem

Example: perfect matchings and matrix scaling

Let

$$
G=\{\text { pairs of diagonal matrices with det } 1\}
$$ act on matrices A by $(X, Y) \cdot A=X A Y$.

Ancient theorem

1. H has a perfect matching \Longleftrightarrow
2. $\inf _{(X, Y) \in G}\left\|X A_{H} Y\right\|_{F}>0 \Longleftrightarrow$
3. exist X, Y diagonal with $B=X A_{H} Y$ doubly stochastic*:

$$
\operatorname{diag} B B^{T}=I, \operatorname{diag} B^{T} B=I
$$

Why? $\nabla\|X A Y\|_{F}=\left(\operatorname{diag} A A^{\top}-I, \operatorname{diag} A^{\top} A-I\right)$! "row and column sums"

Noncommutative analogue of ancient theorem

Analogue of row and column sums: gradient of (log) norm.
For historical reasons, called moment map, written

$$
\mu(v):=\nabla_{X} \log \left\|e^{X} \cdot v\right\| .
$$

Matrix scaling: $\mu(A)=\frac{1}{\|A\|_{F}^{2}}\left(\operatorname{diag} A A^{\top}-I, \operatorname{diag} A^{\top} A-I\right)$
Conjugation: $\mu(A)=\frac{1}{\|A\|_{F}^{2}}\left(A A^{T}-A^{\top} A\right)$

Ancient theorem

1. $\inf _{(X, Y) \in G}\left\|X A_{H} Y\right\|_{F}>0 \Longleftrightarrow$
2. A_{H} has (approx) doubly stochastic scalings \Longleftrightarrow
3. H has perfect matching.

Kempf-Ness/Hilbert Mumford

1. $\inf _{g \in G}\|g \cdot v\|>0 . \Longleftrightarrow$
2. $\inf _{g \in G}\|\mu(g \cdot v)\|=0$.
3. $\Longleftrightarrow \exists$ homogeneous invariant polynomial nonzero on v.

Problem statements and results

Back to the problems

Set $F(g)=\log \|g \cdot v\|$, and set OPT $:=\inf _{g \in G} F(g)$.

Norm optimization

Given v, produce g^{*} with $F\left(g^{*}\right) \leq$ OPT $+\varepsilon$ or determine that OPT $=-\infty$.
poly $(\log (1 / \varepsilon))$ algorithm for special case; [AGLOW '17], algebraic algorithms for decision version [DM '19, IQS '17].

While we want to approximately optimize F, often the easier task of solving $\nabla F=\mu \approx 0$ is still quite useful.

Scaling

Given v and $\varepsilon>0$, produce g with $\|\mu(g \cdot v)\|<\varepsilon$ or conclude that OPT $=-\infty$.
poly $(1 / \varepsilon)$ time for operators [GGOW16], tensors [BFGGOW18]

The commutative case: Polynomial optimization

Suppose p is a Laurent polynomial p with nonnegative coefficients.
Ancient theorem

$$
\inf _{x_{i}>0} p(x)>0 \Longleftrightarrow 0 \in \operatorname{conv}(\Omega),
$$

$\Omega \subset \mathbb{Z}^{n}$, set of exponents in polynomial.
Easy to optimize, but what about with oracle access to $p, \nabla p$?
Weight margin Γ; Weight norm N
Γ : The closest the convex hull of a subset of Ω can come to the origin without containing it.
N : Maximum ℓ_{2} norm of element of Ω.
[SV17:] can optimize in poly $(1 / \Gamma, N, \log (1 / \varepsilon))$. with oracle access.

Contributions

Before our work, ad hoc range of algebraic/optimization algorithms. New work implies all others, + new efficient algorithms

First order algorithm [BFGOWW 19]

Given oracle access to μ, outputs g with $\|\mu(g \cdot v)\| \leq \varepsilon$ in time $\operatorname{poly}(N$, OPT, $1 / \varepsilon$) or concludes that OPT $=-\infty$.

Second order algorithm [BFGOWW 19]

Given oracle access to μ, Hessian, outputs g with $\log \|g \cdot v\| \leq$ OPT $+\varepsilon$ in time poly $(1 / \Gamma, N$, OPT, $\log (1 / \varepsilon))$ or concludes that OPT $=-\infty$.
$|\mathrm{OPT}| \leq$ poly for reasonable input models.
Size of $1 / \Gamma$ explains previous hard/easy cases:
$\leq n^{3 / 2}$ for operator scaling, conjugation, $\geq 2^{n / 3}$ for tensor scaling.

Algorithms

Geodesic convexity

Set $F(g)=\log \|g \cdot v\|$.

$F\left(e^{x}\right)$ not convex in Hermitian X !

but $F\left(e^{t x}\right)$ is convex in t, i.e. $F\left(e^{x}\right)$ convex along lines!

Geodesics:

analogues of lines in a non-Euclidean space. In G they are of the form

$$
e^{t x} g \text { for } x \text { hermitian }
$$

Then F geodesically convex: convex along

hyperbolic plane geodesics.

Geodesic gradient descent for scaling

Follow steepest geodesic at each step: steepest is

$$
\nabla_{X} F\left(e^{X} g\right)=\mu(g \cdot v)
$$

moment map = geodesic gradient!

Algorithm

Initially $g=1$, step size η.
For $i=1 \ldots . T$,

- Set $H=\mu(g \cdot v)$
- $g \leftarrow e^{-\eta H} g$.

Analysis

We want to show that at some iteration, the geodesic gradient

$$
\mu(g \cdot v)
$$

is small.

F is N -smooth

Second derivative bounded along geodesics:

$$
\partial_{t}^{2} F\left(e^{t x} g\right) \leq N
$$

for unit norm X
Standard analysis carries over!

Theorem

Take $\eta=1 / N$, and $T \geq \frac{2 N}{\varepsilon^{2}}|O P T|$, then at some step $\|\mu(g \cdot v)\| \leq \varepsilon$.

Second order:

Trust region method: consider

$$
Q(X) \text { second order approx for } \mathrm{F}\left(e^{X} g\right) \text {. }
$$

Algorithm

Set $g=I$. For $i=1 \ldots T$,

- Choose Hermitian H to minimize $Q(H)$ subject to $\|H\|_{F} \leq \eta$.
- Set $g \leftarrow e^{H} g$.

Second order analysis

Say F satisfies diameter bound D if

$$
\inf _{\|X\|_{\leq D} \leq D} F\left(e^{x}\right) \leq \text { OPT }+\varepsilon .
$$

Standard; [AGLOW17, CMTV17]

F can be regularized such that the algorithm takes poly $(\log (1 / \varepsilon), D$, OPT $)$ time.

Diameter bounds

Diameter bounded for large weight margin! $D \leq$ poly $(1 / \Gamma)$.

Moment polytopes

Analogue of (r, c)-scaling; ask that $\boldsymbol{\mu}$ take prescribed values. $\boldsymbol{\mu}$ takes value in Hermitian matrices, but...

Surprising and beautiful theorem [Bri87, NM84]

Eigenvalues of $\mu(g \cdot v)$ range over a convex polytope $\Delta(v)$!
$\Delta(v)$ can have exponentially many facets and vertices; examples include polymatroids, matching polytopes, permutahedra.
Weak moment polytope membership
Given v, Decide if $p \in \Delta$ or p at least ε-far from $\Delta(v)$.

Our work gives a poly $(1 / \varepsilon)$ time algorithm for weak membership.
To put decision problem in P, need poly $(\log (1 / \varepsilon))$!

Open problems

Very easy optimization algorithms seem to carry over: alternating minimization, geodesic gradient descent, trust regions.

What about the more powerful algorithms?

- Geodesic ellipsoid method? There is one [R18], but oracle calls take forever.
- Geodesic interior point methods?

Solve norm minimization in poly $(\log (1 / \varepsilon))$ time?

Thanks!

