Efficient algorithms for tensor scaling, quantum marginals, and moment polytopes

Cole Franks (Wutgers)
based on joint work with
Peter Bürgisser, Ankit Garg, Rafael Oliveira, Michael Walter, Avi Wigderson

- Simple classical algorithm for tensor scaling Important example of moment polytope problem Analysis solves nonconvex optimization problem arising in GIT Many interesting consequences of faster algorithms

Overview

- Simple classical algorithm for tensor scaling
- Important example of moment polytope problem Analysis solves nonconvex optimization problem arising in GlT Many interesting consequences of faster algorithms

Overview

- Simple classical algorithm for tensor scaling
- Important example of moment polytope problem
- Analysis solves nonconvex optimization problem arising in GIT Many interesting consequences of faster algorithms

Overview

- Simple classical algorithm for tensor scaling
- Important example of moment polytope problem
- Analysis solves nonconvex optimization problem arising in GIT
- Many interesting consequences of faster algorithms

Outline

- Problem statement and history

Outline

- Problem statement and history
- Algorithm Analysis Conclusion and open problems More moment nolytones

Outline

- Problem statement and history
- Algorithm
- Analysis

Conclusion and open problems More moment polytopes

Outline

- Problem statement and history
- Algorithm
- Analysis
- Conclusion and open problems
- More moment polytopes

Problem statement and history

Quantum marginal problems

Space of d-tensors, denoted $\mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}$:
for $i_{j} \in\left[n_{j}\right]$. Let $n=n_{1} \ldots n_{d}$.

Quantum marginal problems

Space of d-tensors, denoted $\mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}$:
d-dimensional complex arrays of dimensions n_{1}, \ldots, n_{d}; entries

$$
x_{i_{1}, \ldots, i_{d}} \in \mathbb{C}
$$

Quantum marginal problems

Space of d-tensors, denoted $\mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}$:
d-dimensional complex arrays of dimensions n_{1}, \ldots, n_{d}; entries

$$
x_{i_{1}, \ldots, i_{d}} \in \mathbb{C}
$$

for $i_{j} \in\left[n_{j}\right]$.

Quantum marginal problems

Space of d-tensors, denoted $\mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}$:
d-dimensional complex arrays of dimensions n_{1}, \ldots, n_{d}; entries

$$
x_{i_{1}, \ldots, i_{d}} \in \mathbb{C}
$$

for $i_{j} \in\left[n_{j}\right]$. Let $n=n_{1} \ldots n_{d}$.

Quantum marginal problems

Space of d-tensors, denoted $\mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}$:
d-dimensional complex arrays of dimensions n_{1}, \ldots, n_{d}; entries

$$
x_{i_{1}, \ldots, i_{d}} \in \mathbb{C}
$$

for $i_{j} \in\left[n_{j}\right]$. Let $n=n_{1} \ldots n_{d}$.
e.g. $n_{1}=n_{2}=n_{3}=2$:

- Let X be a d-tensor Consider ${ }^{\text {th }}$ slice in $i^{\text {th }}$ direction:
it is a $(d-1)$-tensor. The ith maroinal $n^{(i)}$ is the $n_{j} \times n_{j}$ Gram matrix of the slices in the $i^{\text {th }}$ direction.

Marginals of a tensor

- Let X be a d-tensor
- Consider $j^{\text {th }}$ slice in $i^{\text {th }}$ direction:

it is a $(d-1)$-tensor.
The $i^{\text {th }}$ marginal $\rho_{x}^{(1)}$ is the $n_{i} \times n_{j}$ Gram matrix of the slices in the
$i^{\text {th }}$ direction.

Marginals of a tensor

- Let X be a d-tensor
- Consider $j^{\text {th }}$ slice in $i^{\text {th }}$ direction:

it is a $(d-1)$-tensor.
- The $i^{t h}$ marginal $\rho_{X}^{(i)}$ is the $n_{i} \times n_{i}$ Gram matrix of the slices in the $i^{\text {th }}$ direction.

Example: $n_{1}=n_{2}=n_{3}=2$

Note: $\operatorname{Tr} \rho_{X}^{(i)}=\|X\|^{2!}!$

Example: $n_{1}=n_{2}=n_{3}=2$

Note: $\operatorname{Tr} \rho_{X}^{(i)}=\|X\|^{2!}$

Example: $n_{1}=n_{2}=n_{3}=2$

Note: $\operatorname{Tr} \rho_{X}^{(i)}=\|X\|^{2!}$!

Example: $n_{1}=n_{2}=n_{3}=2$

$$
\rho_{X}^{(1)}:=\left[\begin{array}{l}
-X_{1 * *}- \\
-X_{2 * *}-
\end{array}\right]\left(\left[\begin{array}{l}
-X_{1 * *}- \\
-X_{2 * *}-
\end{array}\right]^{\dagger}\right)=\left[\begin{array}{cc}
0.5 & 0.25 \\
0.25 & 0.5
\end{array}\right]
$$

Example: $n_{1}=n_{2}=n_{3}=2$

$$
\begin{aligned}
& x=\left.\left.\left.\right|_{0} ^{0}\right|_{0.5} ^{0.5-}\right|_{0} ^{0.5} x_{1 * *}^{0}=\left[\begin{array}{cc}
0.5 & 0.5 \\
0 & 0
\end{array}\right] \\
& x_{2 * *}=\left[\begin{array}{cc}
0 & 0.5 \\
0 & 0.5
\end{array}\right] \\
& \rho_{X}^{(1)}:=\left[\begin{array}{l}
-x_{1 * *}- \\
-x_{2 * *}-
\end{array}\right]\left(\left[\begin{array}{l}
\left.-x_{1 * *}-\right]^{\dagger} \\
-x_{2 * *}-
\end{array}\right]^{\dagger}\right)=\left[\begin{array}{cc}
0.5 & 0.25 \\
0.25 & 0.5
\end{array}\right]
\end{aligned}
$$

Note: $\operatorname{Tr} \rho_{x}^{(i)}=\|X\|^{2}!$

Interpretation

If Alice, Bob, and Carol each hold a qubit but the joint state is X, $\rho_{X}^{(1)}, \rho_{X}^{(2)}, \rho_{X}^{(3)}$ are the mixed states of their respective qubits.

One body quantum marginal problem, $d=3$:
Can PSD matrices A, B, C arise as the marginals of some tensor X ?

Interpretation

If Alice, Bob, and Carol each hold a qubit but the joint state is X, $\rho_{X}^{(1)}, \rho_{X}^{(2)}, \rho_{X}^{(3)}$ are the mixed states of their respective qubits.

One body quantum marginal problem, $d=3$:
Can PSD matrices A, B, C arise as the marginals of some tensor X ?

Interpretation

If Alice, Bob, and Carol each hold a qubit but the joint state is X, $\rho_{X}^{(1)}, \rho_{X}^{(2)}, \rho_{X}^{(3)}$ are the mixed states of their respective qubits.

One body quantum marginal problem, $d=3$:
Can PSD matrices A, B, C arise as the marginals of some tensor X ?

Fact: the answer depends only on $\operatorname{spec}(A), \operatorname{spec}(B), \operatorname{spec}(C)$.

Convenient notation

If $\mathbb{X} \subset \mathbb{C}^{n_{0}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}$ is a set of $d+1$-tensors, let

$$
\Delta(\mathbb{X})=\left\{\left(\operatorname{spec}\left(\rho_{Y}^{(1)}\right) /\|Y\|^{2}, \ldots, \operatorname{spec}\left(\rho_{Y}^{(d)}\right) /\|Y\|^{2}\right): Y \in \mathbb{X}\right\}
$$

$\Delta(\mathbb{X})$ is all the tuples of spectra of marginals of elements of \mathbb{X}, normalized to have trace one.

Quantum marginal nrohlom ros tatement:
$p=\left(p_{1}, p_{2}, p_{3}\right)$ list of sequences of nonnegative reals Whether $p \in \Delta($

Convenient notation

If $\mathbb{X} \subset \mathbb{C}^{n_{0}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}$ is a set of $d+1$-tensors, let

$$
\Delta(\mathbb{X})=\left\{\left(\operatorname{spec}\left(\rho_{Y}^{(1)}\right) /\|Y\|^{2}, \ldots, \operatorname{spec}\left(\rho_{Y}^{(d)}\right) /\|Y\|^{2}\right): Y \in \mathbb{X}\right\}
$$

$\Delta(\mathbb{X})$ is all the tuples of spectra of marginals of elements of \mathbb{X}, normalized to have trace one.

Quantum marginal problem,
$p=\left(p_{1}, p_{2}, p_{3}\right)$ list of sequences of nonnegative reals Whether $p \in \Delta$ (

Convenient notation

If $\mathbb{X} \subset \mathbb{C}^{n_{0}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}$ is a set of $d+1$-tensors, let

$$
\Delta(\mathbb{X})=\left\{\left(\operatorname{spec}\left(\rho_{Y}^{(1)}\right) /\|Y\|^{2}, \ldots, \operatorname{spec}\left(\rho_{Y}^{(d)}\right) /\|Y\|^{2}\right): Y \in \mathbb{X}\right\}
$$

$\Delta(\mathbb{X})$ is all the tuples of spectra of marginals of elements of \mathbb{X}, normalized to have trace one.
Quantum marginal problem, restatement:
Input: $p=\left(p_{1}, p_{2}, p_{3}\right)$ list of sequences of nonnegative reals
Output: Whether $p \in \Delta\left(\mathbb{C}^{n_{0}=1} \otimes \mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}\right)$.

More generally:

Given a tensor X, can we locally change basis to obtain specific marginals?
We consider a $d+1$ tensor $X \in \mathbb{C}^{n_{0}} \otimes \mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}$, and let

$G \cdot X$ denotes the orbit of X, and $\overline{G \cdot X}$ the orbit closure.
\square
Input: $p=\left(p_{1}, \ldots, p_{d}\right)$,
a tensor in \mathbb{C}
Output: whether $p \in \triangle(\overline{G \cdot X})$

More generally:

Given a tensor X, can we locally change basis to obtain specific marginals?
We consider a $d+1$ tensor $X \in \mathbb{C}^{n_{0}} \otimes \mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}$, and let $G:=G L_{n_{1}} \times \cdots \times \mathrm{GL}_{n_{d}}$.

$$
g \cdot X:=\left(I_{n_{0}} \otimes g_{1} \otimes g_{2} \otimes \cdots \otimes g_{d}\right) X
$$

$G \cdot X$ denotes the orbit of X, and $\overline{G \cdot X}$ the orbit closure.

$$
\begin{aligned}
\text { estion: } & \text { TENSORSCALING }(X, p) \\
\text { Input: } & p=\left(p_{1}, \ldots, p_{d}\right) \\
& X \text { a tensor in } \mathbb{C}^{n o} \otimes \mathbb{C}^{\prime} \\
\text { Output: } & \text { whether } p \in \Delta(\overline{G \cdot X}) .
\end{aligned}
$$

More generally:

Given a tensor X, can we locally change basis to obtain specific marginals?
We consider a $d+1$ tensor $X \in \mathbb{C}^{n_{0}} \otimes \mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}$, and let $G:=G L_{n_{1}} \times \cdots \times \mathrm{GL}_{n_{d}}$.

$$
g \cdot X:=\left(I_{n_{0}} \otimes g_{1} \otimes g_{2} \otimes \cdots \otimes g_{d}\right) X
$$

$G \cdot X$ denotes the orbit of X, and $\overline{G \cdot X}$ the orbit closure.

Question: TENSORSCALING(X,p)

Input: $p=\left(p_{1}, \ldots, \boldsymbol{p}_{d}\right)$,
X a tensor in $\mathbb{C}^{n_{0}} \otimes \mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}$
Output: whether $p \in \Delta(\overline{G \cdot X})$.

Example

E.g. if $g=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$ then

Moment polytopes

Amazing fact:

$\Delta\left(\mathbb{C}^{n_{0}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}\right)$ and $\Delta(\overline{G \cdot X})$ are convex polytopes!

More generally: Holds if \mathbb{X} is a variety and $G \cdot \mathbb{X} \subset \mathbb{X}$. Then $\Delta(\mathbb{X})$ is

called the moment polytope for the action of G on \mathbb{X}.
The groups can also be more general.

Moment polytopes

Amazing fact:

$\Delta\left(\mathbb{C}^{n_{0}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}\right)$ and $\Delta(\overline{G \cdot X})$ are convex polytopes!

More generally: Holds if \mathbb{X} is a variety and $G \cdot \mathbb{X} \subset \mathbb{X}$. Then $\Delta(\mathbb{X})$ is called the moment polytope for the action of G on \mathbb{X}.
The groups can also be more general.

Moment polytopes

Amazing fact:

$\Delta\left(\mathbb{C}^{n_{0}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}\right)$ and $\Delta(\overline{G \cdot X})$ are convex polytopes!

More generally: Holds if \mathbb{X} is a variety and $G \cdot \mathbb{X} \subset \mathbb{X}$. Then $\Delta(\mathbb{X})$ is called the moment polytope for the action of G on \mathbb{X}. The groups can also be more general.

Example: reducing matrix scaling to tensor scaling

Question: MATRIXSCALING(A)

Input: A, nonnegative matrix
Output: Whether $\exists D_{1}, D_{2} \succ 0$ diagonal with $D_{1} A D_{2}$ doubly stochastic.

Example: reducing matrix scaling to tensor scaling

Question: MATRIXSCALING(A)

Input: A, nonnegative matrix
Output: Whether $\exists D_{1}, D_{2} \succ 0$ diagonal with $D_{1} A D_{2}$ doubly stochastic.
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a nonnegative matrix, and let
$p_{1}=p_{2}=(1,1)$ and

Example: reducing matrix scaling to tensor scaling

Question: MATRIXSCALING(A)

Input: A, nonnegative matrix
Output: Whether $\exists D_{1}, D_{2} \succ 0$ diagonal with $D_{1} A D_{2}$ doubly stochastic.
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a nonnegative matrix, and let

Fact: MATRIXSCALING $(A) \Longleftrightarrow$ TENSORSCALING (X, p)

Example: reducing matrix scaling to tensor scaling

Question: MATRIXSCALING(A)

Input: A, nonnegative matrix
Output: Whether $\exists D_{1}, D_{2} \succ 0$ diagonal with $D_{1} A D_{2}$ doubly stochastic.
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a nonnegative matrix, and let

Fact: MATRIXSCALING(A) \Longleftrightarrow TENSORSCALING (X, p)

Applications of tensor scaling

Matrix scaling:

- deterministically approximating permanent

Operator scaling: (The $d=2$ case of tensor scaling)

- noncommutative rational identity testing
- Forster's radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn's problem on eigenvalues of sums of matrices

One body quantum marginal problem: (Tensor scaling for random X)

- equivalence under SLOCC to locally maximally mixed state
- The Kronecker polytope in representation theory
- null-cone: do all $S_{n_{1}} \times \ldots$ S $_{n_{d}}$-invariant polynomials vanish on X ?

Applications of tensor scaling

Matrix scaling:

- deterministically approximating permanent

Operator scaling: (The $d=2$ case of tensor scaling)

- noncommutative rational identity testing
- Forster's radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn's problem on eigenvalues of sums of matrices

One body quantum marginal problem: (Tensor scaling for random X)

- equivalence under SLOCC to locally maximally mixed state
- The Kronecker polytope in representation theory
- null-cone: do all SL n_{1}
$S L_{n_{d}}$-invariant polynomials vanish on X ?

Applications of tensor scaling

Matrix scaling:

- deterministically approximating permanent

Operator scaling: (The $d=2$ case of tensor scaling)

- noncommutative rational identity testing
- Forster's radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn's problem on eigenvalues of sums of matrices

One body quantum marginal problem: (Tensor scaling for random X)

- equivalence under SLOCC to locally maximally mixed state
- The Kronecker polytope in representation theory
- null-cone: do all SL n_{1}

Applications of tensor scaling

Matrix scaling:

- deterministically approximating permanent

Operator scaling: (The $d=2$ case of tensor scaling)

- noncommutative rational identity testing
- Forster's radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn's problem on eigenvalues of sums of matrices

One body quantum marginal problem: (Tensor scaling for random X)

- equivalence under SLOCC to locally maximally mixed state
- The Kronecker polytope in representation theory

Tensor scaling:

Approximate tensor scaling: TENSORSCALING(X, $p, \varepsilon)$
Input: Tensor X, tuple $p, \varepsilon>0$
Output: If either output g such that for all $i \in[d]$

$$
\left\|\operatorname{spec}\left(\rho_{g \cdot X}^{(i)}\right)-p_{i}\right\|_{1} \leq \varepsilon
$$

or correctly output that $p \notin \Delta(\overline{G \cdot X})$.

History of approxmate scaling algorithms

MATRIXSCALING(A, r, c):

- [Sinkhorn '64]: simple poly $(1 / \varepsilon)$ algorithm when $r=c=1$
- [Linial, Samorodnitsky, Wigderson '98]: poly $\log (1 / \varepsilon)$ for any r, c OPERATORSCALING(X, $\left.p_{1}, p_{2}\right)$: The $d=2$ case of TENSORSCALING
> simple poly $(1 / \varepsilon)$ algorithm when $p_{1}=p_{2}=1$
> decision problem $p_{1}=p_{2}=1$ poly $\log (1 / \varepsilon)$ for $p_{1}=p_{2}=1$ randomized poly $(1 / \varepsilon)$ for any p_{1}, p_{2} One body quantum marginal problem:
\square
$\operatorname{poly}(1 / \varepsilon)$ for $p_{i}=1 / n$
\qquad

History of approxmate scaling algorithms

MATRIXSCALING(A,r,c):

- [Sinkhorn '64]: simple poly $(1 / \varepsilon)$ algorithm when $r=c=1$
- [Linial, Samorodnitsky, Wigderson '98]: poly $\log (1 / \varepsilon)$ for any r, c OPERATORSCALING $\left(X, p_{1}, p_{2}\right)$: The $d=2$ case of TENSORSCALING
- [Gurvits '04]: simple poly $(1 / \varepsilon)$ algorithm when $p_{1}=p_{2}=1$
- [GGOW'17]: decision problem $p_{1}=p_{2}=1$
- [AGLOW'18]: poly $\log (1 / \varepsilon)$ for $p_{1}=p_{2}=1$
- [_'18]: randomized poly $(1 / \varepsilon)$ for any p_{1}, p_{2}

One body quantum marginal problem:

decision problem is in NP \cap coNP

\square

History of approxmate scaling algorithms

MATRIXSCALING(A, r, c):

- [Sinkhorn '64]: simple poly $(1 / \varepsilon)$ algorithm when $r=c=1$
- [Linial, Samorodnitsky, Wigderson '98]: poly $\log (1 / \varepsilon)$ for any r, c OPERATORSCALING $\left(X, p_{1}, p_{2}\right)$: The $d=2$ case of TENSORSCALING
- [Gurvits '04]: simple poly $(1 / \varepsilon)$ algorithm when $p_{1}=p_{2}=1$
- [GGOW'17]: decision problem $p_{1}=p_{2}=1$
- [AGLOW'18]: poly $\log (1 / \varepsilon)$ for $p_{1}=p_{2}=1$
- [_'18]: randomized poly $(1 / \varepsilon)$ for any p_{1}, p_{2}

One body quantum marginal problem:

- [BCMW'17]: decision problem is in NP \cap coNP

History of approxmate scaling algorithms

MATRIXSCALING(A, $r, c)$:

- [Sinkhorn '64]: simple poly $(1 / \varepsilon)$ algorithm when $r=c=1$
- [Linial, Samorodnitsky, Wigderson '98]: poly $\log (1 / \varepsilon)$ for any r, c OPERATORSCALING $\left(X, p_{1}, p_{2}\right)$: The $d=2$ case of TENSORSCALING
- [Gurvits '04]: simple poly $(1 / \varepsilon)$ algorithm when $p_{1}=p_{2}=1$
- [GGOW'17]: decision problem $p_{1}=p_{2}=1$
- [AGLOW'18]: poly $\log (1 / \varepsilon)$ for $p_{1}=p_{2}=1$
- [_'18]: randomized poly $(1 / \varepsilon)$ for any p_{1}, p_{2}

One body quantum marginal problem:

- [BCMW'17]: decision problem is in NP \cap coNP

TENSORSCALING $\left(X, p_{1}, \ldots, p_{d}\right)$:

- [BGOWW'17]: $\operatorname{poly}(1 / \varepsilon)$ for $p_{i}=1 / n_{i}$
- [BFGOWW'17]: (this work:) randomized poly $(1 / \varepsilon)$ for any p_{1}, \ldots, p_{d}

Our result

Theorem (BFGOWW '18)

There is a randomized poly $(\langle X\rangle+\langle p\rangle, 1 / \varepsilon)$-time algorithm for $\operatorname{TENSORSCALING}(X, p, \varepsilon)$ with success probability $1 / 2$.

The algorithm requires

$$
O\left(d n^{2} \frac{\langle X\rangle+\langle\lambda\rangle+\log d n}{\varepsilon}\right)
$$

iterations, each dominated by computing a Cholesky decomposition of some $n_{i} \times n_{i}$ matrix.

Implications for decision problem

Convention: $p=\boldsymbol{\lambda} / \mathrm{k}$ for $\boldsymbol{\lambda}$ integral and $k=\sum \boldsymbol{\lambda}_{j}^{(1)}$
Theorem (BFGOWw '18)
If for all i,

$$
\left\|\operatorname{spec}\left(\rho_{g \cdot x}^{(i)}\right)-p^{(i)}\right\|_{1} \leq \exp \left(-O\left(n_{1}+\cdots+n_{d}\right) \log k \max n_{i}\right),
$$

then $p \in \Delta(G \cdot X)$.
Unfortunately, doesn't result in poly time algorithm! Need
poly $(\log (1 / \varepsilon))$.

Implications for decision problem

Convention: $p=\boldsymbol{\lambda} / \mathrm{k}$ for $\boldsymbol{\lambda}$ integral and $k=\sum \boldsymbol{\lambda}_{j}^{(1)}$
Theorem (BFGOWW '18)
If for all i,

$$
\left\|\operatorname{spec}\left(\rho_{g \cdot x}^{(i)}\right)-p^{(i)}\right\|_{1} \leq \exp \left(-O\left(n_{1}+\cdots+n_{d}\right) \log k \max n_{i}\right),
$$

then $p \in \Delta(G \cdot X)$.
Unfortunately, doesn't result in poly time algorithm! Need poly $(\log (1 / \varepsilon))$.

Algorithm

Vague algorithm

Algorithm

Input: X, p with integer coordinates, ε.
Output: $Y=g \cdot X \operatorname{s.t}$. $\left\|\operatorname{spec}\left(\rho_{Y}^{(i)}\right)-p^{(i)}\right\|_{1} \leq \varepsilon$, or OUTSIDE POLYTOPE
Choose g_{0} with i.i.d integer coordinates in [K], set

Repeat T times:

- If done, output
- Else, scale in single factor to FIX the worst marginal of

Output OUTSIDE POLYTOPE

For $T \geq \operatorname{poly}(\langle X\rangle+\langle p\rangle, n, 1 / \varepsilon)$, this is algorithm succeeds with
probability at least $1 / 2$.

Vague algorithm

Algorithm

Input: X, p with integer coordinates, ε.
Output: $Y=g \cdot X \operatorname{s.t} .\left\|\operatorname{spec}\left(\rho_{\gamma}^{(i)}\right)-p^{(i)}\right\|_{1} \leq \varepsilon$, or OUTSIDE POLYTOPE

- Choose g_{0} with i.i.d integer coordinates in $[K]$, set $Y=g_{0} \cdot X /\left\|g_{0} \cdot X\right\|$.

Output OUTSIDE POLYTOPE

For $T \geq \operatorname{poly}(\langle X\rangle+\langle p\rangle, n, 1 / \varepsilon)$, this is algorithm succeeds with
probability at least $1 / 2$.

Vague algorithm

Algorithm

Input: X, p with integer coordinates, ε.
Output: $Y=g \cdot X \operatorname{s.t} .\left\|\operatorname{spec}\left(\rho_{\gamma}^{(i)}\right)-p^{(i)}\right\|_{1} \leq \varepsilon$, or OUTSIDE POLYTOPE

- Choose g_{0} with i.i.d integer coordinates in $[K]$, set $Y=g_{0} \cdot X /\left\|g_{0} \cdot X\right\|$.
- Repeat T times:

Output OUTSIDE POLYTOPE

For $T \geq \operatorname{poly}(\langle X\rangle+\langle p\rangle, n, 1 / \varepsilon)$, this is algorithm succeeds with
probability at least $1 / 2$.

Vague algorithm

Algorithm

Input: X, p with integer coordinates, ε.
Output: $Y=g \cdot X \operatorname{s.t}$. $\left\|\operatorname{spec}\left(\rho_{Y}^{(i)}\right)-p^{(i)}\right\|_{1} \leq \varepsilon$, or OUTSIDE POLYTOPE

- Choose g_{0} with i.i.d integer coordinates in $[K]$, set $Y=g_{0} \cdot X /\left\|g_{0} \cdot X\right\|$.
- Repeat T times:
- If done, output Y.

Output OUTSIDE POLYTOPE

For $T \geq \operatorname{poly}(\langle X\rangle+\langle p\rangle, n, 1 / \varepsilon)$, this is algorithm succeeds with
probability at least $1 / 2$.

Vague algorithm

Algorithm

Input: X, p with integer coordinates, ε.
Output: $Y=g \cdot X \operatorname{s.t.}\left\|\operatorname{spec}\left(\rho_{Y}^{(i)}\right)-p^{(i)}\right\|_{1} \leq \varepsilon$, or OUTSIDE POLYTOPE

- Choose g_{0} with i.i.d integer coordinates in $[K]$, set

$$
Y=g_{0} \cdot X /\left\|g_{0} \cdot X\right\| .
$$

- Repeat T times:
- If done, output Y.
- Else, scale in single factor to FIX the worst marginal of Y. (ignoring damage done to other marginals!)
Output OUTSIDE POLYTOPE

For $T \geq \operatorname{poly}(\langle X\rangle+\langle p\rangle, n, 1 / \varepsilon)$, this is algorithm succeeds with
probability at least $1 / 2$.

Vague algorithm

Algorithm

Input: X, p with integer coordinates, ε.
Output: $Y=g \cdot X \operatorname{s.t}$. $\left\|\operatorname{spec}\left(\rho_{Y}^{(i)}\right)-p^{(i)}\right\|_{1} \leq \varepsilon$, or OUTSIDE POLYTOPE

- Choose g_{0} with i.i.d integer coordinates in $[K]$, set

$$
Y=g_{0} \cdot X /\left\|g_{0} \cdot X\right\| .
$$

- Repeat T times:
- If done, output Y.
- Else, scale in single factor to FIX the worst marginal of Y. (ignoring damage done to other marginals!)
- Output OUTSIDE POLYTOPE

For $T \geq \operatorname{poly}(\langle X\rangle+\langle p\rangle, n, 1 / \varepsilon)$, this is algorithm succeeds with
probability at least 1/2.

Vague algorithm

Algorithm

Input: X, p with integer coordinates, ε.
Output: $Y=g \cdot X \operatorname{s.t}$. $\left\|\operatorname{spec}\left(\rho_{Y}^{(i)}\right)-p^{(i)}\right\|_{1} \leq \varepsilon$, or OUTSIDE POLYTOPE

- Choose g_{0} with i.i.d integer coordinates in $[K]$, set

$$
Y=g_{0} \cdot X /\left\|g_{0} \cdot X\right\| .
$$

- Repeat T times:
- If done, output Y.
- Else, scale in single factor to FIX the worst marginal of Y. (ignoring damage done to other marginals!)
- Output OUTSIDE POLYTOPE

Theorem

For $T \geq \operatorname{poly}(\langle X\rangle+\langle p\rangle, n, 1 / \varepsilon)$, this is algorithm succeeds with probability at least $1 / 2$.

Scaling II

$$
g=\left(g_{1}, I, \ldots, l\right) \text { scales the flattening: }
$$

In particular,

Scaling II

$g=\left(g_{1}, l, \ldots, l\right)$ scales the flattening:

$$
\left[\begin{array}{c}
-(g \cdot Y)_{1 * \ldots}- \\
\vdots \\
-(g \cdot Y)_{n_{1 *} \ldots}-
\end{array}\right]=g_{1}\left[\begin{array}{c}
-Y_{1 * \ldots}- \\
\vdots \\
-X_{n_{1} * \ldots}-
\end{array}\right]
$$

Scaling II

$g=\left(g_{1}, l, \ldots, l\right)$ scales the flattening:

$$
\left[\begin{array}{c}
-(g \cdot Y)_{1 * \ldots}- \\
\vdots \\
-(g \cdot Y)_{n_{1} * \ldots}-
\end{array}\right]=g_{1}\left[\begin{array}{c}
-Y_{1 * \ldots}- \\
\vdots \\
-X_{n_{1} * \ldots}-
\end{array}\right]
$$

In particular,

$$
\rho_{g \cdot y}^{(1)}=g_{1}\left[\begin{array}{c}
-y_{1 * \ldots}- \\
\vdots \\
-x_{n_{1} * \ldots}-
\end{array}\right]\left(g_{1}\left[\begin{array}{c}
-Y_{1 * \ldots}- \\
\vdots \\
-x_{n_{1} * \ldots}-
\end{array}\right]\right)^{\dagger}=g_{1} \rho_{Y}^{(1)} g_{1}^{\dagger}
$$

Fixing a marginal

Easy to fix $i^{\text {th }}$ marginal: choose g_{i} such that $g_{i} \rho_{\gamma}^{(i)} g_{i}^{\dagger}=\operatorname{diag}\left(\boldsymbol{p}^{(i)}\right)$. not every choice works. Correct way:

L lower triangular Cholesky factor $L^{\dagger} L=\rho_{\gamma}^{-1}$
Remark:
It is maintained that $g \cdot Y$ is a unit vector the entire time.

Fixing a marginal

Easy to fix $i^{\text {th }}$ marginal: choose g_{i} such that $g_{i} \rho_{\gamma}^{(i)} g_{i}^{\dagger}=\operatorname{diag}\left(p^{(i)}\right)$. WARNING: not every choice works. Correct way:

$$
g_{i}=\sqrt{\operatorname{diag}\left(p^{(i)}\right)} L,
$$

L lower triangular Cholesky factor $L^{\dagger} L=\rho_{\gamma}^{-1}$.
Remark:
It is maintained that $g \cdot Y$ is a unit vector the entire time.

Fixing a marginal

Easy to fix $i^{\text {th }}$ marginal: choose g_{i} such that $g_{i} \rho_{\gamma}^{(i)} g_{i}^{\dagger}=\operatorname{diag}\left(p^{(i)}\right)$. WARNING: not every choice works. Correct way:

$$
g_{i}=\sqrt{\operatorname{diag}\left(p^{(i)}\right)} L,
$$

L lower triangular Cholesky factor $L^{\dagger} L=\rho_{\gamma}^{-1}$.

Remark:

It is maintained that $g \cdot Y$ is a unit vector the entire time.

Analysis

Proof outline

- The randomization step: Success = nonvanishing of a potential function on $g_{0} \cdot X$
If potential function nonvanishing, is in fact bounded below by

The triangular scaling steps: the potential function decreases by $\Omega\left(\varepsilon^{2}\right)$ each step provided marginals are ε-far from targets

Proof outline

- The randomization step: Success = nonvanishing of a potential function on $g_{0} \cdot X$
If potential function nonvanishing, is in fact bounded below by

$$
\operatorname{poly}(\langle X\rangle+\langle p\rangle)
$$

The triangular scaling steps: the potential function decreases by $\Omega\left(\varepsilon^{2}\right)$ each step provided marginals are ε-far from targets

Proof outline

- The randomization step: Success = nonvanishing of a potential function on $g_{0} \cdot X$
If potential function nonvanishing, is in fact bounded below by

$$
\operatorname{poly}(\langle X\rangle+\langle p\rangle)
$$

- The triangular scaling steps: the potential function decreases by $\Omega\left(\varepsilon^{2}\right)$ each step provided marginals are ε-far from targets

Description of the potential functions

First define a modified determinant.

Definition

If b is a lower triangular matrix and α a sequence of real numbers,

Throughout the iterations, keep track of the following function:

Description of the potential functions

First define a modified determinant.

Definition

If b is a lower triangular matrix and α a sequence of real numbers, define

$$
\chi_{\alpha}(b)=\prod_{i=1}^{m} b_{i i}^{\alpha_{i}} .
$$

Throughout the iterations, keep track of the following function:
where $\chi_{p}(g)=\prod_{i=1}^{d} \chi_{p}(i)\left(g_{i}\right)$.

Description of the potential functions

First define a modified determinant.

Definition

If b is a lower triangular matrix and α a sequence of real numbers, define

$$
\chi_{\alpha}(b)=\prod_{i=1}^{m} b_{i i}^{\alpha_{i}}
$$

Throughout the iterations, keep track of the following function:

$$
f_{p, Y}(g):=\log \frac{\|g \cdot Y\|^{2}}{\left|\chi_{p}(g)\right|^{2}}
$$

where $\chi_{p}(g)=\prod_{i=1}^{d} \chi_{p^{(i)}}\left(g_{i}\right)$.

Triangular scaling steps

Lemma (Change in potential function)

Let $g(t)$ be the scaling in the $t^{\text {th }}$ step. If for some i,

$$
\left\|\rho_{g(t) \cdot Y}^{(i)}-\operatorname{diag}\left(p_{\uparrow}^{(i)}\right)\right\|_{T r}>\varepsilon,
$$

then $f_{p, \gamma}(g(t+1)) \leq f_{p, \gamma}(g(t))-\Omega\left(\varepsilon^{2}\right)$.

$$
\begin{gathered}
B:=\left\{g: g_{i} \text { lower triangular }\right\} . \\
\text { if } \inf _{g \in B} f_{p, Y}(b)=-C \text {, then the number of iterations is at }
\end{gathered}
$$

most

Triangular scaling steps

Lemma (Change in potential function)

Let $g(t)$ be the scaling in the $t^{\text {th }}$ step. If for some i,

$$
\left\|\rho_{g(t) \cdot Y}^{(i)}-\operatorname{diag}\left(p_{\uparrow}^{(i)}\right)\right\|_{T r}>\varepsilon,
$$

then $f_{p, Y}(g(t+1)) \leq f_{p, Y}(g(t))-\Omega\left(\varepsilon^{2}\right)$.

Let

$$
B:=\left\{g: g_{i} \text { lower triangular }\right\} .
$$

Corollary: if $\inf _{g \in B} f_{p, y}(b)=-C$, then the number of iterations is at
most

Triangular scaling steps

Lemma (Change in potential function)

Let $g(t)$ be the scaling in the $t^{\text {th }}$ step. If for some i,

$$
\left\|\rho_{g(t) \cdot Y}^{(i)}-\operatorname{diag}\left(p_{\uparrow}^{(i)}\right)\right\|_{T r}>\varepsilon,
$$

then $f_{p, r}(g(t+1)) \leq f_{p, r}(g(t))-\Omega\left(\varepsilon^{2}\right)$.

Let

$$
B:=\left\{g: g_{i} \text { lower triangular }\right\} .
$$

Corollary: if $\inf _{g \in B} f_{p, r}(b)=-C$, then the number of iterations is at most

$$
O\left(C / \varepsilon^{2}\right)
$$

Consider

$$
f_{p, \gamma}(g(t+1))-f_{p, \gamma}(g(t))
$$

At each step, $\|g(t) \cdot X\|$ is 1 , so this is

$$
-\log \left|\chi_{p}(g(t+1))\right|^{2}+\log \left|\chi_{p}(g(t))\right|^{2}
$$

Recall that only the $i^{\text {th }}$ factor changed was multiplied by $\sqrt{\operatorname{diag}\left(p^{(i)}\right)} L$, so the above is

However, $\sum_{j}\left|L_{j j}\right|^{-2} \leq\left\|L^{-1}\right\|_{F}=\operatorname{Tr} \rho_{g(t) \cdot Y}^{(i)}=1$, so the above is $-D_{v_{1}}\left(n^{(i) \| a)}<0\right.$

Why does f decrease at all?

Consider

$$
f_{p, \gamma}(g(t+1))-f_{p, r}(g(t))
$$

At each step, $\|g(t) \cdot X\|$ is 1 , so this is

$$
-\log \left|\chi_{p}(g(t+1))\right|^{2}+\log \left|\chi_{p}(g(t))\right|^{2}
$$

Recall that only the $i^{\text {th }}$ factor changed was multiplied by
$\sqrt{\operatorname{diag}\left(p^{(i)}\right) L}$, so the above is

Why does f decrease at all?

Consider

$$
f_{p, \gamma}(g(t+1))-f_{p, \gamma}(g(t))
$$

At each step, $\|g(t) \cdot X\|$ is 1 , so this is

$$
-\log \left|\chi_{p}(g(t+1))\right|^{2}+\log \left|\chi_{p}(g(t))\right|^{2}
$$

Recall that only the $i^{\text {th }}$ factor changed was multiplied by $\sqrt{\operatorname{diag}\left(p^{(i)}\right)} L$, so the above is

Why does f decrease at all?

Consider

$$
f_{p, \gamma}(g(t+1))-f_{p, \gamma}(g(t))
$$

At each step, $\|g(t) \cdot X\|$ is 1 , so this is

$$
-\log \left|\chi_{p}(g(t+1))\right|^{2}+\log \left|\chi_{p}(g(t))\right|^{2}
$$

Recall that only the $i^{\text {th }}$ factor changed was multiplied by $\sqrt{\operatorname{diag}\left(p^{(i)}\right)} L$, so the above is

$$
-\sum_{j=1}^{n_{i}} p_{j}^{(i)} \log \left(p_{j}^{(i)}\left|L_{j j}\right|^{2}\right)
$$

However, $\sum_{j}\left|L_{j j}\right|^{-2} \leq\left\|L^{-1}\right\|_{F}=\operatorname{Tr} \rho_{g(t) \cdot Y}^{(i)}=1$, so the above is

Why does f decrease at all?

Consider

$$
f_{p, \gamma}(g(t+1))-f_{p, \gamma}(g(t))
$$

At each step, $\|g(t) \cdot X\|$ is 1 , so this is

$$
-\log \left|\chi_{p}(g(t+1))\right|^{2}+\log \left|\chi_{p}(g(t))\right|^{2}
$$

Recall that only the $i^{\text {th }}$ factor changed was multiplied by $\sqrt{\operatorname{diag}\left(p^{(i)}\right)} L$, so the above is

$$
-\sum_{j=1}^{n_{i}} p_{j}^{(i)} \log \left(p_{j}^{(i)}\left|L_{j j}\right|^{2}\right)
$$

However, $\sum_{j}\left|L_{j j}\right|^{-2} \leq\left\|L^{-1}\right\|_{F}=\operatorname{Tr} \rho_{g(t) \cdot Y}^{(i)}=1$, so the above is

$$
-D_{K L}\left(p^{(i)} \| q\right)<0
$$

for some (subnormalized) distribution q.

Randomization step: highest weights

A polynomial P on $\mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}$ is a highest weight** of weight $\boldsymbol{\lambda}$ if

$$
P(g \cdot X)=\chi_{\lambda}(g) P(X)
$$

for all $g \in B$.
lower triangular matrices on the polynomials.
Really this is a lowest weight of $-\lambda$

Randomization step: highest weights

A polynomial P on $\mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}$ is a highest weight** of weight $\boldsymbol{\lambda}$ if

$$
P(g \cdot X)=\chi_{\lambda}(g) P(X)
$$

for all $g \in B$. That is, p is a common eigenvector of the action of the lower triangular matrices on the polynomials.

Randomization step: highest weights

A polynomial P on $\mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{d}}$ is a highest weight** of weight $\boldsymbol{\lambda}$ if

$$
P(g \cdot X)=\chi_{\lambda}(g) P(X)
$$

for all $g \in B$. That is, p is a common eigenvector of the action of the lower triangular matrices on the polynomials. **Really this is a lowest weight of $-\lambda$

Nonvanishing highest weights = lower bounds

Suppose P is a highest weight of degree k of weight $\boldsymbol{\lambda}$ satisfying $P(Y): \leq\|P\|\|Y\|^{k}$ for all Y. Then

$$
f_{p, Y}(g) \geq \frac{1}{k} \log \frac{|P(Y)|^{2}}{\|P\|^{2}}
$$

Thus, highest weights that do not vanish on Y give us lower bounds!

Nonvanishing highest weights = lower bounds

Suppose P is a highest weight of degree k of weight $\boldsymbol{\lambda}$ satisfying $P(Y): \leq\|P\|\|Y\|^{k}$ for all Y. Then

$$
f_{p, Y}(g) \geq \frac{1}{k} \log \frac{|P(Y)|^{2}}{\|P\|^{2}}
$$

Proof.

$$
k f_{p, Y}(g)=\log \frac{\|g \cdot Y\|^{2 k}}{\left|\chi_{\lambda}(g)\right|^{2}} \geq \log \frac{|P(g \cdot Y)|^{2}}{\|P\|^{2}\left|\chi_{\lambda}(g)\right|^{2}}=\log \frac{|P(X)|^{2}}{\|P\|^{2}}
$$

Thus, highest weights that do not vanish on Y give us lower bounds!

Nonvanishing highest weights = lower bounds

Suppose P is a highest weight of degree k of weight $\boldsymbol{\lambda}$ satisfying $P(Y): \leq\|P\|\|Y\|^{k}$ for all Y. Then

$$
f_{p, Y}(g) \geq \frac{1}{k} \log \frac{|P(Y)|^{2}}{\|P\|^{2}}
$$

Proof.

$$
k f_{p, Y}(g)=\log \frac{\|g \cdot Y\|^{2 k}}{\left|\chi_{\lambda}(g)\right|^{2}} \geq \log \frac{|P(g \cdot Y)|^{2}}{\|P\|^{2}\left|\chi_{\lambda}(g)\right|^{2}}=\log \frac{|P(X)|^{2}}{\|P\|^{2}}
$$

Thus, highest weights that do not vanish on Y give us lower bounds!

Nonzero highest weight after randomization

Theorem (Ness-Mumford '84, Brion '87)
$p \in \Delta(X) \cap \mathbb{Q}$ if and only if some there is some integer ℓ such that $\boldsymbol{\lambda}=\ell \mathrm{p}$ is integral and some highest weight $P_{\boldsymbol{\lambda}}$ does not vanish on $\overline{G \cdot X}$.

Further, (Derksen '01), if ℓp is integral we may take
$k=\left(\ell d \max n_{i}\right)^{\left(d \max n_{i}^{2}\right)}$;
Thus in randomization step we may take $K=2\left(l d \max n_{i}\right)^{\left(d \max n^{2}\right)}$ to
obtain a nonvanishing highest weight with probability 1/2.

Nonzero highest weight after randomization

Theorem (Ness-Mumford '84, Brion '87)

$p \in \Delta(X) \cap \mathbb{Q}$ if and only if some there is some integer ℓ such that $\boldsymbol{\lambda}=\ell \mathrm{p}$ is integral and some highest weight $P_{\boldsymbol{\lambda}}$ does not vanish on $\overline{G \cdot X}$.

Further, (Derksen '01), if ℓ p is integral we may take $k=\left(\ell d \max n_{i}\right)^{\left(d \max n_{i}^{2}\right)}$;
Thus in randomization step we may take $K=2\left(\ell d \max n_{i}\right)^{\left(d \max n_{i}^{2}\right)}$ to obtain a nonvanishing highest weight with probability $1 / 2$.

Nonvanishing highest weights \Longrightarrow bounded highest weights

Lemma (BFGOWW'18)

The space of highest weights of weight $\boldsymbol{\lambda}$ are spanned by polynomials with integer coefficients and $\|P\| \leq n^{k}$.

Suppose the largest entry of $g_{0} \cdot X$ is M.
Corollary
If a highest weight of $\boldsymbol{\lambda}$ doesn't vanish on $g_{0} \cdot X$, then $\inf _{g \in B} f_{p, r}(g) \geq-2 \log n-\log \left\|g_{0} \cdot X\right\|^{2} \geq-3 \log n-\log M$

Corollary
The algorithm runs in
$O\left((\log n+\log M) / \varepsilon^{2}\right)=O\left(d \max n_{i}\left((X)+\langle p\rangle+\log d \max n_{i}\right) / \varepsilon^{2}\right)$ steps

Nonvanishing highest weights \Longrightarrow bounded highest weights

Lemma (BFGOWW'18)

The space of highest weights of weight $\boldsymbol{\lambda}$ are spanned by polynomials with integer coefficients and $\|P\| \leq n^{k}$.

Suppose the largest entry of $g_{0} \cdot X$ is M.
Corollary
If a highest weight of $\boldsymbol{\lambda}$ doesn't vanish on $g_{0} \cdot X$, then $\inf _{g \in B} f_{p, r}(g) \geq-2 \log n-\log \left\|g_{0} \cdot X\right\|^{2} \geq-3 \log n-\log M$

Corollary
The algorithm runs in
$O\left((\log n+\log M) / \varepsilon^{2}\right)=O\left(d \max n_{i}\left((X)+\langle p\rangle+\log d \max n_{i}\right) / \varepsilon^{2}\right)$ steps

Nonvanishing highest weights \Longrightarrow bounded highest weights

Lemma (BFGOWW'18)

The space of highest weights of weight $\boldsymbol{\lambda}$ are spanned by polynomials with integer coefficients and $\|P\| \leq n^{k}$.

Suppose the largest entry of $g_{0} \cdot X$ is M.

Corollary

If a highest weight of $\boldsymbol{\lambda}$ doesn't vanish on $g_{0} \cdot X$, then $\inf _{g \in B} f_{p, r}(g) \geq-2 \log n-\log \left\|g_{0} \cdot X\right\|^{2} \geq-3 \log n-\log M$

Corollary
The algorithm runs in
$O\left((\log n+\log M) / \varepsilon^{2}\right)=O\left(d \max n_{i}\left(\langle X\rangle+\langle p\rangle+\log d \max n_{i}\right) / \varepsilon^{2}\right)$ steps

Nonvanishing highest weights \Longrightarrow bounded highest weights

Lemma (BFGOWW'18)

The space of highest weights of weight $\boldsymbol{\lambda}$ are spanned by polynomials with integer coefficients and $\|P\| \leq n^{k}$.

Suppose the largest entry of $g_{0} \cdot X$ is M.

Corollary

If a highest weight of $\boldsymbol{\lambda}$ doesn't vanish on $g_{0} \cdot X$, then $\inf _{g \in B} f_{p, r}(g) \geq-2 \log n-\log \left\|g_{0} \cdot X\right\|^{2} \geq-3 \log n-\log M$

Corollary

The algorithm runs in
$O\left((\log n+\log M) / \varepsilon^{2}\right)=O\left(d \max n_{i}\left(\langle X\rangle+\langle p\rangle+\log d \max n_{i}\right) / \varepsilon^{2}\right)$ steps

Open problems

Open problems

- Obtain poly $\log (1 / \varepsilon)$ run time!
- Solve the optimization problem for other group actions (in progress).
- Develop separation oracles for moment polytopes.

Thank you!

Moment polytopes

General framework

Suppose G acts linearly on a vector space V and the inner product $\langle-,-\rangle$ is invariant under the unitaries $K=U\left(n_{1}\right) \times \cdots \times U\left(n_{d}\right)$.

Definition
 The map $\mu: V \rightarrow \operatorname{Herm}_{n_{1}} \times \cdots \times$ Herm $_{n_{d}}$ given by

is known as the moment map for the action of G on V.

General framework

Suppose G acts linearly on a vector space V and the inner product $\langle-,-\rangle$ is invariant under the unitaries $K=U\left(n_{1}\right) \times \cdots \times U\left(n_{d}\right)$.

Definition

The map $\mu: V \rightarrow \operatorname{Herm}_{n_{1}} \times \cdots \times \operatorname{Herm}_{n_{d}}$ given by

$$
\mu: X \mapsto \nabla_{A=0} \log \left\|e^{A} \cdot X\right\|
$$

is known as the moment map for the action of G on V.

Moment polytope

Define

$$
\Delta(X)=\left\{\left(\operatorname{spec}\left(\mu^{(1)}(Y)\right), \ldots, \operatorname{spec}\left(\mu^{(d)}(Y)\right): Y \in \overline{G \cdot X}\right\}\right.
$$

Amazingly, $\Delta(X)$ is not only a polytope but encodes the rep. theory

Moment polytope

Define

$$
\Delta(X)=\left\{\left(\operatorname{spec}\left(\mu^{(1)}(Y)\right), \ldots, \operatorname{spec}\left(\mu^{(d)}(Y)\right): Y \in \overline{G \cdot X}\right\}\right.
$$

Amazingly, $\Delta(X)$ is not only a polytope but encodes the rep. theory of polynomials on $\overline{G \cdot X}$!
G acts on a polynomial p on V by $g \cdot p(x)=p\left(g^{-1} \cdot x\right)$. $\Delta(X) \cap \mathbb{Q}=\left\{\boldsymbol{\lambda} / k: V_{G, \lambda} \subset R_{k}(\overline{G \cdot X})\right\}$

Moment polytope

Define

$$
\Delta(X)=\left\{\left(\operatorname{spec}\left(\mu^{(1)}(Y)\right), \ldots, \operatorname{spec}\left(\mu^{(d)}(Y)\right): Y \in \overline{G \cdot X}\right\}\right.
$$

Amazingly, $\Delta(X)$ is not only a polytope but encodes the rep. theory of polynomials on $\overline{G \cdot X}$!
G acts on a polynomial p on V by $g \cdot p(x)=p\left(g^{-1} \cdot x\right)$.

$$
\Delta(X) \cap \mathbb{Q}=\left\{\boldsymbol{\lambda} / k: V_{G, \lambda} \subset R_{k}(\overline{G \cdot X})\right\}
$$

Moment polytope

Define

$$
\Delta(X)=\left\{\left(\operatorname{spec}\left(\mu^{(1)}(Y)\right), \ldots, \operatorname{spec}\left(\mu^{(d)}(Y)\right): Y \in \overline{G \cdot X}\right\}\right.
$$

Amazingly, $\Delta(X)$ is not only a polytope but encodes the rep. theory of polynomials on $\overline{G \cdot X}$!
G acts on a polynomial p on V by $g \cdot p(x)=p\left(g^{-1} \cdot x\right)$.
Theorem (Mumford '84, Brion '87)

$$
\Delta(X) \cap \mathbb{Q}=\left\{\boldsymbol{\lambda} / k: V_{G, \lambda} \subset R_{k}(\overline{G \cdot X})\right\}
$$

