Analytic algorithms for the moment polytope

Cole Franks

Rutgers University

Based on joint work with

Peter Bürgisser

Ankit Garg

Rafael Oliveira

Avi Wigderson

Mainly from "Towards a theory of non-commutative optimization: geodesic 1st and 2nd order methods for moment maps and polytopes" FOCS 2019

Outline

- 1. Moment polytopes by example
- 2. Algorithms for the general problem

Moment polytopes

Motivating question

Horn's problem:

Are $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}^n$ the spectra of three $n \times n$ matrices H_1, H_2, H_3 such that

$$H_1 + H_2 = H_3$$
?

If so, can one find the matrices efficiently?

Horn set

Let
$$\mathcal{V} = \mathbb{P}(\mathsf{Mat}(n)^2)$$
, define

$$\mu: \mathcal{V} \to \mathsf{Herm}(n)^3$$

by

$$\mu: [A_1,A_2] \mapsto \frac{\left(A_1A_1^{\dagger}, \quad A_2A_2^{\dagger}, \quad A_1^{\dagger}A_1 + A_2^{\dagger}A_2\right)}{\|A_1\|^2 + \|A_2\|^2}.$$

Note $eigs(AA^{\dagger}) = eigs(A^{\dagger}A)$, so

$$\operatorname{eigs}(A_1 A_1^{\dagger}), \quad \operatorname{eigs}(A_2 A_2^{\dagger}), \quad \operatorname{eigs}(A_1^{\dagger} A_1 + A_2^{\dagger} A_2)$$

is a "yes" instance to Horn's problem (in fact, all such instances take this form).

4

Moment polytopes

- G = GL(n)
- $\pi:G \to \mathbb{C}^m$ a representation of G where U(n) acts unitarily
- $\mathcal{V} \subset \mathbb{P}(\mathbb{C}^m)$ a projective variety fixed by G,

Moment map is the map $\mu: \mathcal{V} \to n \times n$ Hermitians =: Herm(n) given by

$$\mu: v \mapsto \nabla_{H \in \mathsf{Herm}(n)} \log \|e^H \cdot v\|$$

 $i\mu$ is a moment map for U(n) in the physical sense! In particular:

Theorem (Kirwan)

Image of

$$\mathcal{V} \xrightarrow{\mu} \operatorname{\mathsf{Herm}}(n) \xrightarrow{\mathsf{take \ eigs.}} \mathbb{R}^n$$

is a convex polytope in \mathbb{R}^n known as moment polytope, denoted $\Delta(\mathcal{V})$

Horn polytope

- $\mathcal{V} = \mathbb{P}(\mathsf{Mat}(n)^2)$
- $G = GL(n)^3$
- π given by

$$(g_1,g_2,g_3)\cdot (A_1,A_2)=(g_1A_1g_3^{\dagger},g_2A_2g_3^{\dagger}).$$

• $\mu: \mathcal{V} \to \operatorname{Herm}(n)^3$ given by

$$\mu: [A_1, A_2] \mapsto \frac{(A_1 A_1^{\dagger}, A_2 A_2^{\dagger}, A_1^{\dagger} A_1 + A_2^{\dagger} A_2)}{\|A_1\|^2 + \|A_2\|^2}.$$

Thus, image of

$$V \longrightarrow {}^{\mu} \longrightarrow \operatorname{Herm}(n)^3 \longrightarrow {}^{\text{take eigs.}} (\mathbb{R}^n)^3$$

is the* solution set of the Horn problem!

Link to algebra

[CF: Missing!]

Algorithmic tasks

Input $(\mathcal{V}, \pi, \lambda)$

- ullet Projective variety ${\cal V}$ as arithmetic circuit parametrizing it
- Representation π as its list of irreducible subrepresentations as elements of \mathbb{Z}^n
- Target $\lambda \in \mathbb{Q}^n$

- 1. **membership:** determine whether λ in $\Delta(V)$.
- 2. ε -search: given $\lambda \in \mathbb{R}^n$, either find an element $v \in \lambda$ such that
 - $\|\mu(v) \operatorname{diag}(\lambda)\| < \varepsilon$, OR
 - correctly declare $\lambda \notin \Delta(\mathcal{V})$.
 - i.e. find an approximate preimage under μ !
- 1/exp(poly)-search suffices for membership!

Algorithm for ε -search for Horn polytope (F18)

Input: $(\lambda_1, \lambda_2, \lambda_3) \in (\mathbb{R}^n)^3$ and $\varepsilon > 0$.

1. Choose A_1 , A_2 at random. Define

$$\mu_1 = A_1 A_1^{\dagger}, \quad \mu_2 = A_2 A_2^{\dagger}, \quad \mu_3 = A_1^{\dagger} A_1 + A_2^{\dagger} A_2.$$

Want $\mu_i = \operatorname{diag}(\lambda_i)$

- 2. while $\|\mu_3 \operatorname{diag}(\lambda_3)\| > \varepsilon$, do:
 - a. Choose *B* upper triangular such that $B^{\dagger}\mu_{3}B = \text{diag}(\lambda_{3})$, Set $A_{i} \leftarrow A_{i}B$.
 - b. For $i \in 1, 2$, choose B_i upper triangular s.t. $B_i^{\dagger} \mu_i B_i = \text{diag}(\lambda_i)$, $\text{Set} \left[A_i \leftarrow B_i^{\dagger} A_i \right]$
- 3. **output** $A_1^{\dagger}A_1, A_2^{\dagger}A_2$.

Complexity of moment polytope membership?

The case $\lambda = 0$ is the null-cone problem from Ankit's talk!

- 1. Is membership in **P**?
 - For tori $(G = \mathbb{C}^n_{\times})$ Folklore, [SV17]
 - For Horn polytope, by saturation conjecture[MNS12]
- 2. Is it in **RP**?
 - We think so in general, but no proof yet!
- 3. Is it in **NP** or **coNP**?
 - In $NP \cap coNP$ for $\mathcal{V} = \mathbb{P}(\mathbb{C}^m)$ [BCMW17]
 - Not known in general!

General algorithms

Convert ε -search to an optimization problem

[CF: MISSING!]

Optimization algorithms

Alternating minimization: $poly(1/\varepsilon)$ time [BFGOWW18]

• Tensor products of easy reps e.g. Horn, k-tensors

 $\log \operatorname{cap}_{\lambda}(v)$ can be cast as a geodesically convex program! Domain is positive-semidefinite matrices; geodesics through P take the form $\sqrt{P}e^{Ht}\sqrt{P}$

Geodesic gradient descent: $poly(1/\epsilon)$ time [BFGOWW19]

• Any representation, e.g. $\mathcal{V} = \bigwedge^k \mathbb{C}^n$, Sym^k \mathbb{C}^n , arbitrary quivers

Geodesic trust-regions: $poly(log(1/\epsilon), log \kappa)$ time [BFGOWW19]

- κ is smallest condition-number of an arepsilon-optimizer for ${\sf cap}_{\lambda}(v)$
- \bullet polynomial for some interesting cases, e.g. arbitrary quivers with $\lambda=0$

Open problems

- 1. Is moment polytope membership in $NP \cap coNP$, or even RP or P?
- 2. Membership is in P for Horn's problem. But how about exp(-poly)-search?
- 3. If (A_1, A_2) a random pair of matrices, does $cap_{\lambda}(A_1, A_2)$ have an ε -minimizer with condition number at most

$$\exp(\operatorname{poly}(\log(1/\varepsilon), \langle \lambda \rangle))$$
?

