Analytic algorithms for the moment polytope

Cole Franks
Rutgers University

Based on joint work with

Mainly from "Towards a theory of non-commutative optimization: geodesic 1st and 2nd order methods for moment maps and polytopes" FOCS 2019

Outline

1. Moment polytopes by example
2. Algorithms for the general problem

Moment polytopes

Motivating question

Horn's problem:

Are $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}, \boldsymbol{\lambda}_{3} \in \mathbb{R}^{n}$ the spectra of three $n \times n$ matrices H_{1}, H_{2}, H_{3} such that

$$
H_{1}+H_{2}=H_{3} ?
$$

If so, can one find the matrices efficiently?

Horn set

Let $\mathcal{V}=\mathbb{P}\left(\operatorname{Mat}(n)^{2}\right)$, define

$$
\mu: \mathcal{V} \rightarrow \operatorname{Herm}(n)^{3}
$$

by

$$
\mu:\left[A_{1}, A_{2}\right] \mapsto \frac{\left(A_{1} A_{1}^{\dagger}, \quad A_{2} A_{2}^{\dagger}, \quad A_{1}^{\dagger} A_{1}+A_{2}^{\dagger} A_{2}\right)}{\left\|A_{1}\right\|^{2}+\left\|A_{2}\right\|^{2}}
$$

Note $\operatorname{eigs}\left(A A^{\dagger}\right)=\operatorname{eigs}\left(A^{\dagger} A\right)$, so

$$
\operatorname{eigs}\left(A_{1} A_{1}^{\dagger}\right), \quad \operatorname{eigs}\left(A_{2} A_{2}^{\dagger}\right), \quad \operatorname{eigs}\left(A_{1}^{\dagger} A_{1}+A_{2}^{\dagger} A_{2}\right)
$$

is a "yes" instance to Horn's problem (in fact, all such instances take this form).

Moment polytopes

- $G=G L(n)$
- $\pi: G \rightarrow \mathbb{C}^{m}$ a representation of G where $U(n)$ acts unitarily
- $\mathcal{V} \subset \mathbb{P}\left(\mathbb{C}^{m}\right)$ a projective variety fixed by G,

Moment map is the map $\mu: \mathcal{V} \rightarrow n \times n \operatorname{Hermitians}=: \operatorname{Herm}(n)$ given by

$$
\mu: v \mapsto \nabla_{H \in \operatorname{Herm}(n)} \log \left\|e^{H} \cdot v\right\|
$$

$i \mu$ is a moment map for $U(n)$ in the physical sense! In particular:

Theorem (Kirwan)

Image of

$$
\mathcal{V} \xrightarrow{\mu} \operatorname{Herm}(n) \xrightarrow{\text { take eigs. }} \mathbb{R}^{n}
$$

is a convex polytope in \mathbb{R}^{n} known as moment polytope, denoted $\Delta(\mathcal{V})$

Horn polytope

- $\mathcal{V}=\mathbb{P}\left(\operatorname{Mat}(n)^{2}\right)$
- $G=G L(n)^{3}$
- π given by

$$
\left(g_{1}, g_{2}, g_{3}\right) \cdot\left(A_{1}, A_{2}\right)=\left(g_{1} A_{1} g_{3}^{\dagger}, g_{2} A_{2} g_{3}^{\dagger}\right) .
$$

- $\mu: \mathcal{V} \rightarrow \operatorname{Herm}(n)^{3}$ given by

$$
\mu:\left[A_{1}, A_{2}\right] \mapsto \frac{\left(A_{1} A_{1}^{\dagger}, \quad A_{2} A_{2}^{\dagger}, \quad A_{1}^{\dagger} A_{1}+A_{2}^{\dagger} A_{2}\right)}{\left\|A_{1}\right\|^{2}+\left\|A_{2}\right\|^{2}} .
$$

Thus, image of

$$
\mathcal{V} \xrightarrow{\mu} \operatorname{Herm}(n)^{3} \xrightarrow{\text { take eigs. }}\left(\mathbb{R}^{n}\right)^{3}
$$

is the* solution set of the Horn problem!

Link to algebra

[CF: Missing!]

Algorithmic tasks

Input $(\mathcal{V}, \pi, \lambda)$

- Projective variety \mathcal{V} as arithmetic circuit parametrizing it
- Representation π as its list of irreducible subrepresentations as elements of \mathbb{Z}^{n}
- Target $\lambda \in \mathbb{Q}^{n}$

1. membership: determine whether λ in $\Delta(\mathcal{V})$.
2. ε-search: given $\boldsymbol{\lambda} \in \mathbb{R}^{n}$, either find an element $v \in \boldsymbol{\lambda}$ such that

- $\|\mu(v)-\operatorname{diag}(\lambda)\|<\varepsilon$, OR
- correctly declare $\lambda \notin \Delta(\mathcal{V})$.
i.e. find an approximate preimage under μ !
$1 / \exp ($ poly $)$-search suffices for membership!

Algorithm for ε-search for Horn polytope (F18)

Input: $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in\left(\mathbb{R}^{n}\right)^{3}$ and $\varepsilon>0$.

1. Choose A_{1}, A_{2} at random. Define

$$
\mu_{1}=A_{1} A_{1}^{\dagger}, \quad \mu_{2}=A_{2} A_{2}^{\dagger}, \quad \mu_{3}=A_{1}^{\dagger} A_{1}+A_{2}^{\dagger} A_{2}
$$

Want $\mu_{i}=\operatorname{diag}\left(\boldsymbol{\lambda}_{i}\right)$
2. while $\left\|\mu_{3}-\operatorname{diag}\left(\lambda_{3}\right)\right\|>\varepsilon$, do:
a. Choose B upper triangular such that $B^{\dagger} \mu_{3} B=\operatorname{diag}\left(\lambda_{3}\right)$, Set $A_{i} \leftarrow A_{i} B$.
b. For $i \in 1,2$, choose B_{i} upper triangular s.t. $B_{i}^{\dagger} \mu_{i} B_{i}=\operatorname{diag}\left(\boldsymbol{\lambda}_{i}\right)$, Set $A_{i} \leftarrow B_{i}^{\dagger} A_{i}$.
3. output $A_{1}^{\dagger} A_{1}, A_{2}^{\dagger} A_{2}$.

Complexity of moment polytope membership?

The case $\lambda=0$ is the null-cone problem from Ankit's talk!

1. Is membership in \mathbf{P} ?

- For tori $\left(G=\mathbb{C}_{\times}^{n}\right)$ Folklore,[SV17]
- For Horn polytope, by saturation conjecture[MNS12]

2. Is it in RP?

- We think so in general, but no proof yet!

3. Is it in NP or coNP?

- In $\mathbf{N P} \cap \operatorname{coNP}$ for $\mathcal{V}=\mathbb{P}\left(\mathbb{C}^{m}\right)$ [BCMW17]
- Not known in general!

General algorithms

Convert ε-search to an optimization problem

[CF: MISSING!]

Optimization algorithms

Alternating minimization: $\operatorname{poly}(1 / \varepsilon)$ time [BFGOWW18]

- Tensor products of easy reps e.g. Horn, k-tensors $\log \operatorname{cap}_{\lambda}(v)$ can be cast as a geodesically convex program!
Domain is positive-semidefinite matrices; geodesics through P take the form $\sqrt{P} e^{H t} \sqrt{P}$

Geodesic gradient descent: poly $(1 / \varepsilon)$ time [BFGOWW19]

- Any representation, e.g. $\mathcal{V}=\bigwedge^{k} \mathbb{C}^{n}$, Sym $^{k} \mathbb{C}^{n}$, arbitrary quivers

Geodesic trust-regions: $\operatorname{poly}(\log (1 / \varepsilon), \log \kappa)$ time [BFGOWW19]

- κ is smallest condition-number of an ε-optimizer for $\operatorname{cap}_{\lambda}(v)$
- polynomial for some interesting cases, e.g. arbitrary quivers with $\lambda=0$

Open problems

1. Is moment polytope membership in NP \cap coNP, or even $\mathbf{R P}$ or \mathbf{P} ?
2. Membership is in \mathbf{P} for Horn's problem. But how about $\exp (-$ poly $)$-search?
3. If $\left(A_{1}, A_{2}\right)$ a random pair of matrices, does $\operatorname{cap}_{\lambda}\left(A_{1}, A_{2}\right)$ have an ε-minimizer with condition number at most

$$
\exp (\operatorname{poly}(\log (1 / \varepsilon),\langle\lambda\rangle)) ?
$$

Merci!

